Menu Close

2-2-8-A-B-Find-A-B-




Question Number 215439 by hardmath last updated on 06/Jan/25
( 2  +  (√2) )^8  =  (√A)  +  (√B)  Find:   A−B = ?
(2+2)8=A+BFind:AB=?
Answered by Rasheed.Sindhi last updated on 07/Jan/25
If z is a binomial surd and n is  natural      (z^n )^(−) =(z^(−) )^n   Is this correct?          ( 2  +  (√2) )^8  =  (√A)  +  (√B) ...(i)  ⇒( 2  −  (√2) )^8  =  (√A)  −  (√B) ...(ii)  (i)×(ii):      ( 2  +  (√2) )^8 ( 2  −  (√2) )^8 =A−B      {(2+(√2) )(2+(√2) )}^8 =A−B       (4−2)^8 =A−B         A−B=256
Ifzisabinomialsurdandnisnatural(zn)=(z)nIsthiscorrect?(2+2)8=A+B(i)(22)8=AB(ii)(i)×(ii):(2+2)8(22)8=AB{(2+2)(2+2)}8=AB(42)8=ABAB=256
Commented by TonyCWX08 last updated on 07/Jan/25
Yeah.
Yeah.
Commented by mr W last updated on 07/Jan/25
right!   generally for a,b,c,n∈N:  (a+b(√c))^n   =Σ_(k=0) ^n C_k ^n a^(n−k) (b(√c))^k   =Σ_(r=0) ^(⌊(n/2)⌋) C_(2r) ^n a^(n−2r) (b(√c))^(2r) +Σ_(r=0) ^(⌊(n/2)⌋−1) C_(2r+1) ^n a^(n−2r+1) (b(√c))^(2r+1)   =Σ_(r=0) ^(⌊(n/2)⌋) C_(2r) ^n a^(n−2r) b^(2r) c^r +Σ_(r=0) ^(⌊(n/2)⌋−1) C_(2r+1) ^n a^(n−2r+1) b^(2r+1) c^r (√c)  =Σ_(r=0) ^(⌊(n/2)⌋) C_(2r) ^n a^(n−2r) b^(2r) c^r +(Σ_(r=0) ^(⌊(n/2)⌋−1) C_(2r+1) ^n a^(n−2r+1) b^(2r+1) c^r )(√c)  =A+B(√c)  similarly  (a−b(√c))^n   =Σ_(r=0) ^(⌊(n/2)⌋) C_(2r) ^n a^(n−2r) b^(2r) c^r −(Σ_(r=0) ^(⌊(n/2)⌋−1) C_(2r+1) ^n a^(n−2r+1) b^(2r+1) c^r )(√c)  =A−B(√c)
right!generallyfora,b,c,nN:(a+bc)n=nk=0Cknank(bc)k=n2r=0C2rnan2r(bc)2r+n21r=0C2r+1nan2r+1(bc)2r+1=n2r=0C2rnan2rb2rcr+n21r=0C2r+1nan2r+1b2r+1crc=n2r=0C2rnan2rb2rcr+(n21r=0C2r+1nan2r+1b2r+1cr)c=A+Bcsimilarly(abc)n=n2r=0C2rnan2rb2rcr(n21r=0C2r+1nan2r+1b2r+1cr)c=ABc
Commented by Rasheed.Sindhi last updated on 07/Jan/25
Thanks  sirs!
Thankssirs!
Answered by TonyCWX08 last updated on 07/Jan/25
(2+(√2))^2 =4+4(√2)+2=6+4(√2)  (6+4(√2))^2 =36+48(√2)+32=68+48(√2)  (68+48(√2))^2 =4624+6528(√2)+4608=9232+6528(√2)  =(√(9232^2 ))+(√(2(6528)^2 ))  A−B=9232^2 −2(6528)^2 =256
(2+2)2=4+42+2=6+42(6+42)2=36+482+32=68+482(68+482)2=4624+65282+4608=9232+65282=92322+2(6528)2AB=923222(6528)2=256
Commented by hardmath last updated on 07/Jan/25
(2 + (√2))^8  ...
(2+2)8
Commented by TonyCWX08 last updated on 07/Jan/25
(2+(√2))^8 =(((2+(√2))^2 )^2 )^2
(2+2)8=(((2+2)2)2)2

Leave a Reply

Your email address will not be published. Required fields are marked *