Question Number 215439 by hardmath last updated on 06/Jan/25
$$\left(\:\mathrm{2}\:\:+\:\:\sqrt{\mathrm{2}}\:\right)^{\mathrm{8}} \:=\:\:\sqrt{\mathrm{A}}\:\:+\:\:\sqrt{\mathrm{B}} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{A}−\mathrm{B}\:=\:? \\ $$
Answered by Rasheed.Sindhi last updated on 07/Jan/25
$${If}\:{z}\:{is}\:{a}\:{binomial}\:{surd}\:{and}\:{n}\:{is} \\ $$$${natural}\: \\ $$$$\:\:\:\overline {\left({z}^{{n}} \right)}=\left(\overline {{z}}\right)^{{n}} \\ $$$${Is}\:{this}\:{correct}? \\ $$$$\: \\ $$$$\:\:\:\:\:\left(\:\mathrm{2}\:\:+\:\:\sqrt{\mathrm{2}}\:\right)^{\mathrm{8}} \:=\:\:\sqrt{\mathrm{A}}\:\:+\:\:\sqrt{\mathrm{B}}\:…\left({i}\right) \\ $$$$\Rightarrow\left(\:\mathrm{2}\:\:−\:\:\sqrt{\mathrm{2}}\:\right)^{\mathrm{8}} \:=\:\:\sqrt{\mathrm{A}}\:\:−\:\:\sqrt{\mathrm{B}}\:…\left({ii}\right) \\ $$$$\left({i}\right)×\left({ii}\right): \\ $$$$\:\:\:\:\left(\:\mathrm{2}\:\:+\:\:\sqrt{\mathrm{2}}\:\right)^{\mathrm{8}} \left(\:\mathrm{2}\:\:−\:\:\sqrt{\mathrm{2}}\:\right)^{\mathrm{8}} =\mathrm{A}−\mathrm{B} \\ $$$$\:\:\:\:\left\{\left(\mathrm{2}+\sqrt{\mathrm{2}}\:\right)\left(\mathrm{2}+\sqrt{\mathrm{2}}\:\right)\right\}^{\mathrm{8}} =\mathrm{A}−\mathrm{B} \\ $$$$\:\:\:\:\:\left(\mathrm{4}−\mathrm{2}\right)^{\mathrm{8}} =\mathrm{A}−\mathrm{B} \\ $$$$\:\:\:\:\:\:\:\mathrm{A}−\mathrm{B}=\mathrm{256} \\ $$
Commented by TonyCWX08 last updated on 07/Jan/25
$${Yeah}. \\ $$
Commented by mr W last updated on 07/Jan/25
$${right}!\: \\ $$$${generally}\:{for}\:{a},{b},{c},{n}\in{N}: \\ $$$$\left({a}+{b}\sqrt{{c}}\right)^{{n}} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{k}} ^{{n}} {a}^{{n}−{k}} \left({b}\sqrt{{c}}\right)^{{k}} \\ $$$$=\underset{{r}=\mathrm{0}} {\overset{\lfloor\frac{{n}}{\mathrm{2}}\rfloor} {\sum}}{C}_{\mathrm{2}{r}} ^{{n}} {a}^{{n}−\mathrm{2}{r}} \left({b}\sqrt{{c}}\right)^{\mathrm{2}{r}} +\underset{{r}=\mathrm{0}} {\overset{\lfloor\frac{{n}}{\mathrm{2}}\rfloor−\mathrm{1}} {\sum}}{C}_{\mathrm{2}{r}+\mathrm{1}} ^{{n}} {a}^{{n}−\mathrm{2}{r}+\mathrm{1}} \left({b}\sqrt{{c}}\right)^{\mathrm{2}{r}+\mathrm{1}} \\ $$$$=\underset{{r}=\mathrm{0}} {\overset{\lfloor\frac{{n}}{\mathrm{2}}\rfloor} {\sum}}{C}_{\mathrm{2}{r}} ^{{n}} {a}^{{n}−\mathrm{2}{r}} {b}^{\mathrm{2}{r}} {c}^{{r}} +\underset{{r}=\mathrm{0}} {\overset{\lfloor\frac{{n}}{\mathrm{2}}\rfloor−\mathrm{1}} {\sum}}{C}_{\mathrm{2}{r}+\mathrm{1}} ^{{n}} {a}^{{n}−\mathrm{2}{r}+\mathrm{1}} {b}^{\mathrm{2}{r}+\mathrm{1}} {c}^{{r}} \sqrt{{c}} \\ $$$$=\underset{{r}=\mathrm{0}} {\overset{\lfloor\frac{{n}}{\mathrm{2}}\rfloor} {\sum}}{C}_{\mathrm{2}{r}} ^{{n}} {a}^{{n}−\mathrm{2}{r}} {b}^{\mathrm{2}{r}} {c}^{{r}} +\left(\underset{{r}=\mathrm{0}} {\overset{\lfloor\frac{{n}}{\mathrm{2}}\rfloor−\mathrm{1}} {\sum}}{C}_{\mathrm{2}{r}+\mathrm{1}} ^{{n}} {a}^{{n}−\mathrm{2}{r}+\mathrm{1}} {b}^{\mathrm{2}{r}+\mathrm{1}} {c}^{{r}} \right)\sqrt{{c}} \\ $$$$={A}+{B}\sqrt{{c}} \\ $$$${similarly} \\ $$$$\left({a}−{b}\sqrt{{c}}\right)^{{n}} \\ $$$$=\underset{{r}=\mathrm{0}} {\overset{\lfloor\frac{{n}}{\mathrm{2}}\rfloor} {\sum}}{C}_{\mathrm{2}{r}} ^{{n}} {a}^{{n}−\mathrm{2}{r}} {b}^{\mathrm{2}{r}} {c}^{{r}} −\left(\underset{{r}=\mathrm{0}} {\overset{\lfloor\frac{{n}}{\mathrm{2}}\rfloor−\mathrm{1}} {\sum}}{C}_{\mathrm{2}{r}+\mathrm{1}} ^{{n}} {a}^{{n}−\mathrm{2}{r}+\mathrm{1}} {b}^{\mathrm{2}{r}+\mathrm{1}} {c}^{{r}} \right)\sqrt{{c}} \\ $$$$={A}−{B}\sqrt{{c}} \\ $$
Commented by Rasheed.Sindhi last updated on 07/Jan/25
$$\boldsymbol{\mathrm{Than}}\Bbbk\boldsymbol{\mathrm{s}}\:\:\boldsymbol{\mathrm{sirs}}! \\ $$
Answered by TonyCWX08 last updated on 07/Jan/25
$$\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{4}+\mathrm{4}\sqrt{\mathrm{2}}+\mathrm{2}=\mathrm{6}+\mathrm{4}\sqrt{\mathrm{2}} \\ $$$$\left(\mathrm{6}+\mathrm{4}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{36}+\mathrm{48}\sqrt{\mathrm{2}}+\mathrm{32}=\mathrm{68}+\mathrm{48}\sqrt{\mathrm{2}} \\ $$$$\left(\mathrm{68}+\mathrm{48}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{4624}+\mathrm{6528}\sqrt{\mathrm{2}}+\mathrm{4608}=\mathrm{9232}+\mathrm{6528}\sqrt{\mathrm{2}} \\ $$$$=\sqrt{\mathrm{9232}^{\mathrm{2}} }+\sqrt{\mathrm{2}\left(\mathrm{6528}\right)^{\mathrm{2}} } \\ $$$${A}−{B}=\mathrm{9232}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{6528}\right)^{\mathrm{2}} =\mathrm{256} \\ $$
Commented by hardmath last updated on 07/Jan/25
$$\left(\mathrm{2}\:+\:\sqrt{\mathrm{2}}\right)^{\mathrm{8}} \:… \\ $$
Commented by TonyCWX08 last updated on 07/Jan/25
$$\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)^{\mathrm{8}} =\left(\left(\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \right)^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$