Menu Close

a-and-b-are-complex-numbers-such-that-b-1-Find-b-a-1-a-b-




Question Number 215417 by MATHEMATICSAM last updated on 06/Jan/25
a and b are complex numbers such that  ∣b∣ = 1. Find ∣((b − a)/(1 − a^(−) b))∣
$${a}\:\mathrm{and}\:{b}\:\mathrm{are}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mid{b}\mid\:=\:\mathrm{1}.\:\mathrm{Find}\:\mid\frac{{b}\:−\:{a}}{\mathrm{1}\:−\:\overline {{a}b}}\mid \\ $$
Answered by MrGaster last updated on 06/Jan/25
Let a=x+yi,b=cosθ+isinθ  b−a=(cosθ−x)+i(sinθ−y)  1=a^� b=1−(x+iy)(cos θ−i sin θ)  =1−(x cosθ+y sin θ)−i(x sinθ−y cos θ)  ∣b−a∣=(√((cosθ−x)^2 +(sinθ−y)^2 ))  ∣1−a^� b∣=(√(1−x cosθ−y sinθ)^2 +(x sin θ−y cos θ)^2 ))  ∣((b−a)/(1−a^� b))∣=((√((cosθ−x)^2 +(sinθ−y)^2 ))/( (√((1−x cosθ−y sinθ)^2 +(x sin θ−y cosθ)^2 ))))  =1  ∣((b−a)/(1−a^� b))∣=1 ✓
$$\mathrm{Let}\:{a}={x}+{yi},{b}=\mathrm{cos}\theta+{i}\mathrm{sin}\theta \\ $$$${b}−{a}=\left(\mathrm{cos}\theta−{x}\right)+{i}\left(\mathrm{sin}\theta−{y}\right) \\ $$$$\mathrm{1}=\bar {{a}b}=\mathrm{1}−\left({x}+{iy}\right)\left(\mathrm{cos}\:\theta−{i}\:\mathrm{sin}\:\theta\right) \\ $$$$=\mathrm{1}−\left({x}\:\mathrm{cos}\theta+{y}\:\mathrm{sin}\:\theta\right)−{i}\left({x}\:\mathrm{sin}\theta−{y}\:\mathrm{cos}\:\theta\right) \\ $$$$\mid{b}−{a}\mid=\sqrt{\left(\mathrm{cos}\theta−{x}\right)^{\mathrm{2}} +\left(\mathrm{sin}\theta−{y}\right)^{\mathrm{2}} } \\ $$$$\mid\mathrm{1}−\bar {{a}b}\mid=\sqrt{\left.\mathrm{1}−{x}\:\mathrm{cos}\theta−{y}\:\mathrm{sin}\theta\right)^{\mathrm{2}} +\left({x}\:\mathrm{sin}\:\theta−{y}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} } \\ $$$$\mid\frac{{b}−{a}}{\mathrm{1}−\bar {{a}b}}\mid=\frac{\sqrt{\left(\mathrm{cos}\theta−{x}\right)^{\mathrm{2}} +\left(\mathrm{sin}\theta−{y}\right)^{\mathrm{2}} }}{\:\sqrt{\left(\mathrm{1}−{x}\:\mathrm{cos}\theta−{y}\:\mathrm{sin}\theta\right)^{\mathrm{2}} +\left({x}\:\mathrm{sin}\:\theta−{y}\:\mathrm{cos}\theta\right)^{\mathrm{2}} }} \\ $$$$=\mathrm{1} \\ $$$$\mid\frac{{b}−{a}}{\mathrm{1}−\bar {{a}b}}\mid=\mathrm{1}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *