Menu Close

Question-215445




Question Number 215445 by BaliramKumar last updated on 07/Jan/25
Answered by A5T last updated on 07/Jan/25
(√((x+r)^2 −r^2 ))=(√((r+r)^2 −r^2 ))−(r+x)  ⇒(√(x(x+2r)))=r(√3)−r−x  ⇒4r−2r(√3)−2x(√3)=0  ⇒r=((2(2−(√3))(√3))/(4−2(√3)))=(√3)
$$\sqrt{\left(\mathrm{x}+\mathrm{r}\right)^{\mathrm{2}} −\mathrm{r}^{\mathrm{2}} }=\sqrt{\left(\mathrm{r}+\mathrm{r}\right)^{\mathrm{2}} −\mathrm{r}^{\mathrm{2}} }−\left(\mathrm{r}+\mathrm{x}\right) \\ $$$$\Rightarrow\sqrt{\mathrm{x}\left(\mathrm{x}+\mathrm{2r}\right)}=\mathrm{r}\sqrt{\mathrm{3}}−\mathrm{r}−\mathrm{x} \\ $$$$\Rightarrow\mathrm{4r}−\mathrm{2r}\sqrt{\mathrm{3}}−\mathrm{2x}\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{r}=\frac{\mathrm{2}\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)\sqrt{\mathrm{3}}}{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{3}}}=\sqrt{\mathrm{3}} \\ $$
Answered by mr W last updated on 07/Jan/25
r+x=((2(√3)r)/3)  2−(√3)=((2(√3)r)/3)−r  ⇒r=((3(2−(√3)))/(2(√3)−3))=(√3)
$${r}+{x}=\frac{\mathrm{2}\sqrt{\mathrm{3}}{r}}{\mathrm{3}} \\ $$$$\mathrm{2}−\sqrt{\mathrm{3}}=\frac{\mathrm{2}\sqrt{\mathrm{3}}{r}}{\mathrm{3}}−{r} \\ $$$$\Rightarrow{r}=\frac{\mathrm{3}\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)}{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{3}}=\sqrt{\mathrm{3}} \\ $$
Commented by BaliramKumar last updated on 07/Jan/25
thanks
$${thanks} \\ $$
Answered by A5T last updated on 07/Jan/25
(r+x)^2 =(2r)^2 +(r+x)^2 −2(2r)(r+x)cos30  ⇒2r=(r+x)(√3)⇒r(2−(√3))=(√3)(2−(√3))  ⇒r=(√3)
$$\left(\mathrm{r}+\mathrm{x}\right)^{\mathrm{2}} =\left(\mathrm{2r}\right)^{\mathrm{2}} +\left(\mathrm{r}+\mathrm{x}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{2r}\right)\left(\mathrm{r}+\mathrm{x}\right)\mathrm{cos30} \\ $$$$\Rightarrow\mathrm{2r}=\left(\mathrm{r}+\mathrm{x}\right)\sqrt{\mathrm{3}}\Rightarrow\mathrm{r}\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)=\sqrt{\mathrm{3}}\left(\mathrm{2}−\sqrt{\mathrm{3}}\right) \\ $$$$\Rightarrow\mathrm{r}=\sqrt{\mathrm{3}} \\ $$
Commented by BaliramKumar last updated on 07/Jan/25
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *