Menu Close

0-pi-xtanx-secx-tanx-dx-Solve-the-integral-




Question Number 215496 by MATHEMATICSAM last updated on 08/Jan/25
∫_0 ^π ((xtanx)/(secx + tanx)) dx  Solve the integral.
$$\int_{\mathrm{0}} ^{\pi} \frac{{x}\mathrm{tan}{x}}{\mathrm{sec}{x}\:+\:\mathrm{tan}{x}}\:{dx} \\ $$$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{integral}. \\ $$
Answered by alephnull last updated on 08/Jan/25
  sec(x)+tan(x)=(1/(cos(x)))+((sin (x))/(cos (x)))=((1+sin (x))/(cos (x)))  Thus:  I=∫_0 ^π ((x tan(x)cos(x))/(1+sin(x)))  Let u =1+sin(x) such that du=cos(x)dx    The limits of I evaluate to 0.  I=0
$$ \\ $$$$\mathrm{sec}\left({x}\right)+\mathrm{tan}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{cos}\left({x}\right)}+\frac{\mathrm{sin}\:\left({x}\right)}{\mathrm{cos}\:\left({x}\right)}=\frac{\mathrm{1}+\mathrm{sin}\:\left({x}\right)}{\mathrm{cos}\:\left({x}\right)} \\ $$$$\mathrm{Thus}: \\ $$$${I}=\int_{\mathrm{0}} ^{\pi} \frac{{x}\:\mathrm{tan}\left({x}\right)\mathrm{cos}\left({x}\right)}{\mathrm{1}+\mathrm{sin}\left({x}\right)} \\ $$$$\mathrm{Let}\:{u}\:=\mathrm{1}+\mathrm{sin}\left({x}\right)\:\mathrm{such}\:\mathrm{that}\:\mathrm{d}{u}=\mathrm{cos}\left({x}\right)\mathrm{d}{x} \\ $$$$ \\ $$$$\mathrm{The}\:\mathrm{limits}\:\mathrm{of}\:\mathrm{I}\:\mathrm{evaluate}\:\mathrm{to}\:\mathrm{0}. \\ $$$$\mathrm{I}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *