Menu Close

Find-y-x-log-x-y-y-x-below-2x-2-xy-3y-2-0-




Question Number 215519 by walterpieuler last updated on 09/Jan/25
         Find ((y/x))^(log_(x/y) (y/x) ) below:                                2x^2  + xy − 3y^2  = 0
Find(yx)logxyyxbelow:2x2+xy3y2=0
Answered by Rasheed.Sindhi last updated on 10/Jan/25
 2x^2  + xy − 3y^2  = 0   2((x/y))+1−3((y/x))=0  let (x/y)=a  2a+1−(3/a)=0  2a^2 +a−3=0  (a−1)(2a+3)=0  a=1,−(3/2)  (x/y)=1,−(3/2)     ((y/x))^(log_(x/y) (y/x) ) =((y/x))^(−1) =(x/y)=1,−(3/2)  [∵ log_(x/y) (y/x)=log_(x/y) ((x/y))^(−1) =−1]
2x2+xy3y2=02(xy)+13(yx)=0letxy=a2a+13a=02a2+a3=0(a1)(2a+3)=0a=1,32xy=1,32(yx)logxyyx=(yx)1=xy=1,32[logxyyx=logxy(xy)1=1]

Leave a Reply

Your email address will not be published. Required fields are marked *