Menu Close

Find-y-x-log-x-y-y-x-below-2x-2-xy-3y-2-0-




Question Number 215519 by walterpieuler last updated on 09/Jan/25
         Find ((y/x))^(log_(x/y) (y/x) ) below:                                2x^2  + xy − 3y^2  = 0
$$ \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\mathrm{Find}}\:\left(\frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{x}}}\right)^{\boldsymbol{\mathrm{log}}_{\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{y}}}} \frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{x}}}\:} \boldsymbol{\mathrm{below}}: \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:+\:\boldsymbol{\mathrm{xy}}\:−\:\mathrm{3}\boldsymbol{\mathrm{y}}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$ \\ $$
Answered by Rasheed.Sindhi last updated on 09/Jan/25
 2x^2  + xy − 3y^2  = 0   2((x/y))+1−3((y/x))=0  let (x/y)=a  2a+1−(3/a)=0  2a^2 +a−3=0  (a−1)(2a+3)=0  a=1,−(3/2)  (x/y)=1,−(3/2)     ((y/x))^(log_(x/y) (y/x) ) =((y/x))^(−1) =(x/y)=1,−(3/2)
$$\:\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:+\:\boldsymbol{\mathrm{xy}}\:−\:\mathrm{3}\boldsymbol{\mathrm{y}}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\:\mathrm{2}\left(\frac{{x}}{{y}}\right)+\mathrm{1}−\mathrm{3}\left(\frac{{y}}{{x}}\right)=\mathrm{0} \\ $$$${let}\:\frac{{x}}{{y}}={a} \\ $$$$\mathrm{2}{a}+\mathrm{1}−\frac{\mathrm{3}}{{a}}=\mathrm{0} \\ $$$$\mathrm{2}{a}^{\mathrm{2}} +{a}−\mathrm{3}=\mathrm{0} \\ $$$$\left({a}−\mathrm{1}\right)\left(\mathrm{2}{a}+\mathrm{3}\right)=\mathrm{0} \\ $$$${a}=\mathrm{1},−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\frac{{x}}{{y}}=\mathrm{1},−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\: \\ $$$$\left(\frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{x}}}\right)^{\boldsymbol{\mathrm{log}}_{\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{y}}}} \frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{x}}}\:} =\left(\frac{{y}}{{x}}\right)^{−\mathrm{1}} =\frac{{x}}{{y}}=\mathrm{1},−\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *