Menu Close

Prove-that-x-7-cos-t-2-2-cos-t-y-4-3-sin-t-2-cos-t-is-a-circle-




Question Number 215520 by CrispyXYZ last updated on 09/Jan/25
Prove that  { ((x = ((7 cos t − 2)/(2 − cos t)))),((y = ((4(√3) sin t)/(2 − cos t)))) :} is a circle.
Provethat{x=7cost22costy=43sint2costisacircle.
Answered by alephnull last updated on 09/Jan/25
= x(2−cos(t))=7cos(t)−2, y(2−cos (t))=4(√3)sin (t)  Rearrange  2x−xcos (t)=7cos (t)−2  2y−ycos (t)=4(√3)sin (t)  ↓  xcos (t)=(7cos (t)−2)−2x  ycos (t)=4(√3)sin (t)−2y    recall pythagoras indentity  cos^2 t+sin^2 t=1    cos(t)=((2x+2)/(x−7)), sin(t)=(((2−x)y)/(4(√3)))  Substitute  (((2x+2)/(x−7)))^2 +((((2−x)y)/(4(√3))))^2 =1  simplify  (((2x+2)^2 )/((x−7)^2 ))+(((2−x)^2 y^2 )/(48))=1  =48(2x+2)^2 +(2−x)^2 y^2 (x−7)^2 =48(x−7)^2     answer resembles circle thing  (x−h)^2 +(y−k)^2 =r    so it is
=x(2cos(t))=7cos(t)2,y(2cos(t))=43sin(t)Rearrange2xxcos(t)=7cos(t)22yycos(t)=43sin(t)xcos(t)=(7cos(t)2)2xycos(t)=43sin(t)2yrecallpythagorasindentitycos2t+sin2t=1cos(t)=2x+2x7,sin(t)=(2x)y43Substitute(2x+2x7)2+((2x)y43)2=1simplify(2x+2)2(x7)2+(2x)2y248=1=48(2x+2)2+(2x)2y2(x7)2=48(x7)2answerresemblescirclething(xh)2+(yk)2=rsoitis
Answered by mr W last updated on 10/Jan/25
x=((7 cos t−2)/(2−cos t))=((12)/(2−cos t))−7  ⇒2−cos t=((12)/(x+7))  ⇒cos t=2−((12)/(x+7))=((2(x+1))/(x+7))  ⇒sin t=((y(2−cos t))/(4(√3)))=(((√3)y)/(x+7))  sin^2  t+cos^2  t=1  ⇒((((√3)y)/(x+7)))^2 +4(((x+1)/(x+7)))^2 =1  ⇒3y^2 +4(x+1)^2 =(x+7)^2   ⇒y^2 +(x−1)^2 =4^2   this is a circle with radius 4 and  center at (1, 0)
x=7cost22cost=122cost72cost=12x+7cost=212x+7=2(x+1)x+7sint=y(2cost)43=3yx+7sin2t+cos2t=1(3yx+7)2+4(x+1x+7)2=13y2+4(x+1)2=(x+7)2y2+(x1)2=42thisisacirclewithradius4andcenterat(1,0)

Leave a Reply

Your email address will not be published. Required fields are marked *