Menu Close

R-2-R-2-x-y-2x-3y-3y-find-L-R-2-find-ker-and-the-im-f-o-f-




Question Number 215525 by zetamaths last updated on 09/Jan/25
Φ :R^2 →R^2       (x.;y)∣→(2x+3y:3y)  find         Φ∈L(R^2 )  find ker(Φ) and the im(Φ)  f o f =?
$$\Phi\::\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}^{\mathrm{2}} \: \\ $$$$\:\:\:\left({x}.;{y}\right)\mid\rightarrow\left(\mathrm{2}{x}+\mathrm{3}{y}:\mathrm{3}{y}\right) \\ $$$${find} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\Phi\in\mathscr{L}\left(\mathbb{R}^{\mathrm{2}} \right) \\ $$$${find}\:{ker}\left(\Phi\right)\:{and}\:{the}\:{im}\left(\Phi\right) \\ $$$${f}\:{o}\:{f}\:=? \\ $$$$ \\ $$
Answered by MrGaster last updated on 09/Jan/25
ker(Φ)={x,y}∈ R^2 ∣Φ(x,y)=(0,0)}   ((2,3),(0,3) ) ((x),(y) )= ((0),(0) )   { ((2x+3y=0)),((3y=0)) :}  y=0⇒2x=0⇒x=0  kel(Φ)={(0,0)}✓  im(Φ)={Φ(x,y)∣(x,y)∈ R^2 }  im(Φ)=sqan( ((2),(0) ), ((3),(3) ))  Reduse to echelon form:   ((2,3),(0,3) )∼ ((2,0),(0,3) )  im(Φ)=sqan(( ((2),(0) ), ((0),(3) ))  =sqan( ((1),(0) ), ((0),(1) ))  =R^2 ✓  Conclusion:  ker(Φ)={(0,0)}  im(Φ)=R^2   f=2
$$\left.\mathrm{ker}\left(\Phi\right)=\left\{{x},{y}\right\}\in\:\mathbb{R}^{\mathrm{2}} \mid\Phi\left({x},{y}\right)=\left(\mathrm{0},\mathrm{0}\right)\right\} \\ $$$$\begin{pmatrix}{\mathrm{2}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{3}}\end{pmatrix}\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix} \\ $$$$\begin{cases}{\mathrm{2}{x}+\mathrm{3}{y}=\mathrm{0}}\\{\mathrm{3}{y}=\mathrm{0}}\end{cases} \\ $$$${y}=\mathrm{0}\Rightarrow\mathrm{2}{x}=\mathrm{0}\Rightarrow{x}=\mathrm{0} \\ $$$$\mathrm{kel}\left(\Phi\right)=\left\{\left(\mathrm{0},\mathrm{0}\right)\right\}\checkmark \\ $$$$\mathrm{im}\left(\Phi\right)=\left\{\Phi\left({x},{y}\right)\mid\left({x},{y}\right)\in\:\mathbb{R}^{\mathrm{2}} \right\} \\ $$$$\mathrm{im}\left(\Phi\right)=\mathrm{sqan}\left(\begin{pmatrix}{\mathrm{2}}\\{\mathrm{0}}\end{pmatrix},\begin{pmatrix}{\mathrm{3}}\\{\mathrm{3}}\end{pmatrix}\right) \\ $$$$\mathrm{Reduse}\:\mathrm{to}\:\mathrm{echelon}\:\mathrm{form}: \\ $$$$\begin{pmatrix}{\mathrm{2}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{3}}\end{pmatrix}\sim\begin{pmatrix}{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{3}}\end{pmatrix} \\ $$$$\mathrm{im}\left(\Phi\right)=\mathrm{sqan}\left(\left(\begin{pmatrix}{\mathrm{2}}\\{\mathrm{0}}\end{pmatrix},\begin{pmatrix}{\mathrm{0}}\\{\mathrm{3}}\end{pmatrix}\right)\right. \\ $$$$=\mathrm{sqan}\left(\begin{pmatrix}{\mathrm{1}}\\{\mathrm{0}}\end{pmatrix},\begin{pmatrix}{\mathrm{0}}\\{\mathrm{1}}\end{pmatrix}\right) \\ $$$$=\mathbb{R}^{\mathrm{2}} \checkmark \\ $$$$\mathrm{Conclusion}: \\ $$$$\mathrm{ker}\left(\Phi\right)=\left\{\left(\mathrm{0},\mathrm{0}\right)\right\} \\ $$$$\mathrm{im}\left(\Phi\right)=\mathbb{R}^{\mathrm{2}} \\ $$$${f}=\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *