Menu Close

t-33-ab-t-00-ab-Clearing-up-defintions-t-33-a-a-36-3-t-00-a-a-36-0-t-a-a-36-t-a-transformation-of-a-




Question Number 215527 by alephnull last updated on 09/Jan/25
t_(33) ′ab+t_(00) ′ab=?    Clearing up defintions:  t_(33) ′a=(a−(√(36)))×3  t_(00) ′a=(a−(√(36)))×0  t′a=a−(√(36))  t′a= “transformation” of a
$${t}_{\mathrm{33}} '{ab}+{t}_{\mathrm{00}} '{ab}=? \\ $$$$ \\ $$$$\mathrm{Clearing}\:\mathrm{up}\:\mathrm{defintions}: \\ $$$${t}_{\mathrm{33}} '{a}=\left({a}−\sqrt{\mathrm{36}}\right)×\mathrm{3} \\ $$$${t}_{\mathrm{00}} '{a}=\left({a}−\sqrt{\mathrm{36}}\right)×\mathrm{0} \\ $$$${t}'{a}={a}−\sqrt{\mathrm{36}} \\ $$$${t}'{a}=\:“\mathrm{transformation}''\:\mathrm{of}\:{a} \\ $$
Answered by MrGaster last updated on 10/Jan/25
t_(33) ^� a=(a−6)×3=3a−18  t_(00) ^� a=(a−6)×0=0  t′a=a−6  ⇒t′_(33) ab+t′_(00) ab=(3a−18)b+0  =3ab−18b  ⇒t′_(33) ab+t′_(00) ab=3ab−18b✓
$$\acute {{t}}_{\mathrm{33}} {a}=\left({a}−\mathrm{6}\right)×\mathrm{3}=\mathrm{3}{a}−\mathrm{18} \\ $$$$\acute {{t}}_{\mathrm{00}} {a}=\left({a}−\mathrm{6}\right)×\mathrm{0}=\mathrm{0} \\ $$$${t}'{a}={a}−\mathrm{6} \\ $$$$\Rightarrow{t}'_{\mathrm{33}} {ab}+{t}'_{\mathrm{00}} {ab}=\left(\mathrm{3}{a}−\mathrm{18}\right){b}+\mathrm{0} \\ $$$$=\mathrm{3}{ab}−\mathrm{18}{b} \\ $$$$\Rightarrow{t}'_{\mathrm{33}} {ab}+{t}'_{\mathrm{00}} {ab}=\mathrm{3}{ab}−\mathrm{18}{b}\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *