Question-215679 Tinku Tara January 14, 2025 Trigonometry 0 Comments FacebookTweetPin Question Number 215679 by BaliramKumar last updated on 14/Jan/25 Answered by MATHEMATICSAM last updated on 14/Jan/25 sec2θ=4xy(x+y)2⇒cos2θ=(x+y)24xy(x−y)2⩾0⇒(x+y)2−4xy⩾0⇒(x+y)2⩾4xy⇒(x+y)24xy⩾1anditsequalto1whenx=yWeknowcos2θ⩽1Socos2θwillbe(x+y)24xywhenx=y.Sosec2θ=4xy(x+y)2isonlypossiblewhenx=y. Answered by A5T last updated on 14/Jan/25 (x+y)2⩾4xy⇒sec2θ=4xy(x+y)2⩽4xy4xy=1Butsec2θ=1cos2θ⩾1⇒sec2θ⩾1andsec2θ⩽1whichisonlypossiblewhensecθ=1⇒4xy=(x+y)2⇒x2−2xy+y2=(x−y)2=0⇒x=y Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-1-sec-pi-2-x-arctanx-pi-4-Next Next post: Question-215715 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.