Menu Close

If-b-3-a-2-c-ac-2-3abc-then-prove-that-one-root-of-ax-2-bx-c-0-is-the-square-of-the-other-one-




Question Number 215837 by MATHEMATICSAM last updated on 19/Jan/25
If b^3  + a^2 c + ac^2  = 3abc then prove that  one root of ax^2  + bx + c = 0 is the square   of the other one.
Ifb3+a2c+ac2=3abcthenprovethatonerootofax2+bx+c=0isthesquareoftheotherone.
Answered by MrGaster last updated on 19/Jan/25
given b^3 +a^2 c+ac^2 =3abc  β be the roots of ax^2 +bx+c=0  by Vieta′s formulas:Σα=−(b/a)∧Πα=(c/a)  if one root is the□ of the other,then ∃γ:α=γ^2 ∧β=γ∨α=γ∧β=γ^2   without loss of generality,assume α=γ^2 ∧β=γ  ∴Σα=γ^2 +γ=−(b/a)  Πα=γ^3 =(c/a)  from beth sides by a^3 :((b/a))^3 +((c/a))+((c/a))^2 =3((b/a))((c/a))  substitute Σα and Πα:(−Σα)^3 +Πα+(Πα)^2 =3(−Σα)(Πα)  (−(γ^2 +γ))^3 +γ^3 +(γ^3 )^2 =3(−(γ^2 +γ))(γ^3 )  −3γ^4 =−3γ^4   bx+c=0 is indeed the □ of the other.  ps:“□”  denotes squaring.
givenb3+a2c+ac2=3abcβbetherootsofax2+bx+c=0byVietasformulas:Σα=baΠα=caifonerootisthe◻oftheother,thenγ:α=γ2β=γα=γβ=γ2withoutlossofgenerality,assumeα=γ2β=γΣα=γ2+γ=baΠα=γ3=cafrombethsidesbya3:(ba)3+(ca)+(ca)2=3(ba)(ca)substituteΣαandΠα:(Σα)3+Πα+(Πα)2=3(Σα)(Πα)((γ2+γ))3+γ3+(γ3)2=3((γ2+γ))(γ3)3γ4=3γ4bx+c=0isindeedthe◻oftheother.ps:◻denotessquaring.
Commented by A5T last updated on 19/Jan/25
From the wording of the question, what is   required to prove is  :   b^3 +a^2 c+ac^2 =3abc⇒x_1 =γ ∧ x_2 =γ^2   You showed the converse here :  x_1 =γ ∧ x_2 =γ^2  ⇒ b^3 +a^2 c+ac^2 =3abc    Both are not quite the same.  A⇒B ≢ B⇒A .
Fromthewordingofthequestion,whatisrequiredtoproveis:b3+a2c+ac2=3abcx1=γx2=γ2Youshowedtheconversehere:x1=γx2=γ2b3+a2c+ac2=3abcBotharenotquitethesame.ABBA.
Answered by A5T last updated on 19/Jan/25
Let the roots of ax^2 +bx+c=0 be x_1  and x_2   x_1 +x_2 =((−b)/a); x_1 x_2 =(c/a)  b^3 +a^2 c+ac^2 =3abc⇒^(/a^3 ) ((b/a))^3 +((c/a))+((c/a))^2 =3((b/a))((c/a))  ⇒−(x_1 +x_2 )^3 +x_1 x_2 +x_1 ^2 x_2 ^2 =−3(x_1 +x_2 )(x_1 x_2 )  ⇒−(x_1 ^3 +3x_1 ^2 x_2 +3x_1 x_2 ^2 +x_2 ^3 )+x_1 x_2 +x_1 ^2 x_2 ^2 =−3x_1 ^2 x_2 −3x_1 x_2 ^2   ⇒−x_1 ^3 −x_2 ^3 +x_1 x_2 +x_1 ^2 x_2 ^2 =−x_1 ^2 (x_1 −x_2 ^2 )+x_2 (x_1 −x_2 ^2 )=0  ⇒(x_1 ^2 −x_2 )(x_1 −x_2 ^2 )=0  ⇒x_1 ^2 =x_2  or x_2 ^2 =x_1                                                                ■
Lettherootsofax2+bx+c=0bex1andx2x1+x2=ba;x1x2=cab3+a2c+ac2=3abc/a3(ba)3+(ca)+(ca)2=3(ba)(ca)(x1+x2)3+x1x2+x12x22=3(x1+x2)(x1x2)(x13+3x12x2+3x1x22+x23)+x1x2+x12x22=3x12x23x1x22x13x23+x1x2+x12x22=x12(x1x22)+x2(x1x22)=0(x12x2)(x1x22)=0x12=x2orx22=x1◼
Commented by ArshadS last updated on 19/Jan/25
5th line:  ⇒−(x_1 ^3 +3x_1 ^2 x_2 +3x_1 x_2 ^2 +x_2 ^3 )+x_1 x_2 +x_1 ^2 x_2 ^2 =−3x_1 ^2 x_2 −3x_1 x_2 ^2
5thline:(x13+3x12x2+3x1x22+x23)+x1x2+x12x22=3x12x23x1x22
Commented by A5T last updated on 19/Jan/25
It was a typo, thanks.
Itwasatypo,thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *