Question Number 215828 by CrispyXYZ last updated on 19/Jan/25

Answered by mr W last updated on 19/Jan/25

Commented by mr W last updated on 19/Jan/25
![say MF_1 =p, MF_2 =q according to definition of hyperbola p−q=constant=2a say F_1 F_2 =2c c=ea with e=eccentricity x=α_1 , y=α_2 cos α_1 =((p^2 +4c^2 −q^2 )/(4cp)) cos α_2 =((q^2 +4c^2 −p^2 )/(4cq)) cos α_1 −cos α_2 =(1/(4c))(((p^2 +4c^2 −q^2 )/p)−((q^2 +4c^2 −p^2 )/q)) =(1/(4c))(p−q+((4c^2 −q^2 )/p)−((4c^2 −p^2 )/q)) =(1/(4c))[p−q+((p^3 −q^2 −4c^2 (p−q))/(pq))] =(a/(2c))[1+((p^2 +pq+q^2 −4c^2 )/(pq))] =(a/(2c))[1+(((p−q)^2 +3pq−4c^2 )/(pq))] =((2a)/c)(1+((a^2 −c^2 )/(pq))) =(2/e)[1+((a^2 (1−e^2 ))/(pq))] 1−cos α_1 cos α_2 =1−((p^2 +4c^2 −q^2 )/(4cp))×((q^2 +4c^2 −p^2 )/(4cq)) =1+(((p^2 −q^2 +4c^2 )(p^2 −q^2 −4c^2 ))/(16c^2 pq)) =1+(((p^2 −q^2 )^2 −16c^4 )/(16c^2 pq)) =1+((a^2 (p+q)^2 −4c^4 )/(4c^2 pq)) =1+((a^2 [(p−q)^2 +4pq]−4c^4 )/(4c^2 pq)) =1+((a^2 (a^2 +pq)−c^4 )/(c^2 pq)) =1+(1/e^2 )+((a^2 (1−e^4 ))/(e^2 pq)) =((e^2 +1)/e^2 )[1+((a^2 (1−e^2 ))/(pq))] ((∣cos α_1 −cos α_2 ∣)/(1−cos α_1 cos α_2 ))=(2/e)×(e^2 /(e^2 +1))=((2e)/(e^2 +1)) ✓](https://www.tinkutara.com/question/Q215847.png)
Commented by Tawa11 last updated on 19/Jan/25

Commented by CrispyXYZ last updated on 20/Jan/25

Commented by mr W last updated on 20/Jan/25
