Menu Close

log-24-3-a-and-log-24-6-b-6-log-8-b-4a-




Question Number 215840 by golsendro last updated on 19/Jan/25
   log _(24)  3= a and log _(24)  6 = (b/6)     log _(√8)  (b−4a)= ?
log243=aandlog246=b6log8(b4a)=?
Commented by oubiji last updated on 19/Jan/25
    b−4a=log_(24) 6^6 −log_(24) 3^4                   =log_(24) (6^6 /3^4 )                  =log_(24) 24^2                   = 2     then :       log_(√8) (b−4a)=log_(√8) 2                                =((ln2)/(ln(√8)))                                =((ln2)/((3/2)ln2))                               =(2/3)
b4a=log2466log2434=log246634=log24242=2then:log8(b4a)=log82=ln2ln8=ln232ln2=23
Commented by Rasheed.Sindhi last updated on 20/Jan/25
please next time  post your solution as   “answer” not as a “comment”
pleasenexttimepostyoursolutionasanswernotasacomment
Answered by A5T last updated on 19/Jan/25
b=log_(24) 6^6   ;    4a=log_(24) 3^4   b−4a=log_(24) ((6^6 /3^4 ))=log_(24) (24^2 )=2  ⇒log_(√8) (b−4a)⇒log_(√8) (2)=log_2^(3/2)  (2)=(2/3)
b=log2466;4a=log2434b4a=log24(6634)=log24(242)=2log8(b4a)log8(2)=log232(2)=23
Answered by MathematicalUser2357 last updated on 26/Jan/25
log_(√8) (6×log_(24) 6−log_(24) 3)  FAILED TO CALCULATE  why do tinku tara can′t do log_b x
log8(6×log246log243)FAILEDTOCALCULATEwhydotinkutaracantdologbx

Leave a Reply

Your email address will not be published. Required fields are marked *