Menu Close

Question-216332




Question Number 216332 by mr W last updated on 04/Feb/25
Answered by cherokeesay last updated on 04/Feb/25
Answered by A5T last updated on 04/Feb/25
Commented by A5T last updated on 04/Feb/25
(1/2)×6×10×sinθ=((6×10×(√(6^2 +10^2 −2×6×10cosθ)))/(4R))  ⇒2Rsinθ=(√(136−120cosθ))⇒R=((√(34−30cosθ))/(sinθ))  ⇒R^2 =((34−30cosθ)/(1−cos^2 θ))...(i)  ((sin(180−θ))/(AB))=((sin90)/(10))⇒AB=10sinθ  (2R)^2 =(2AB)^2 +6^2   ⇒R^2 =100sin^2 θ+9=109−100cos^2 θ...(ii)  (i)&(ii)⇒109−100cos^2 θ=((34−30cosθ)/(1−cos^2 θ))  ⇒cosθ=((3+_− (√(209)))/(20))  ⇒R^2 =109−((109+_− 3(√(209)))/2)=((109+^− 3(√(209)))/2)  ⇒R=(√((109+3(√(209)))/2))=((3+(√(209)))/2)≈8.728
12×6×10×sinθ=6×10×62+1022×6×10cosθ4R2Rsinθ=136120cosθR=3430cosθsinθR2=3430cosθ1cos2θ(i)sin(180θ)AB=sin9010AB=10sinθ(2R)2=(2AB)2+62R2=100sin2θ+9=109100cos2θ(ii)(i)&(ii)109100cos2θ=3430cosθ1cos2θcosθ=3+20920R2=109109+32092=109+32092R=109+32092=3+20928.728
Commented by mahdipoor last updated on 04/Feb/25
why ((2R)^2 =(2AB)^2 +6^2 )?
why((2R)2=(2AB)2+62)?
Commented by A5T last updated on 04/Feb/25
The diameter, length 2R, subtends an angle of  90° at the circumference.
Thediameter,length2R,subtendsanangleof90°atthecircumference.
Commented by A5T last updated on 04/Feb/25
Commented by A5T last updated on 04/Feb/25
CE=2R; AE=2AB; AC=6  ∠CAE=90° ⇒ CE^2 =AE^2 =AC^2    ⇒(2R)^2 =(2AB)^2 +6^2
CE=2R;AE=2AB;AC=6CAE=90°CE2=AE2=AC2(2R)2=(2AB)2+62
Commented by mr W last updated on 04/Feb/25
��
Answered by mr W last updated on 04/Feb/25
Commented by mr W last updated on 04/Feb/25
R=x+3  y^2 =(x+3)^2 −3^2 =10^2 −x^2   x^2 +3x−50=0  ⇒x=((−3+(√(209)))/2)  ⇒R=((−3+(√(209)))/2)+3=((3+(√(209)))/2) ✓
R=x+3y2=(x+3)232=102x2x2+3x50=0x=3+2092R=3+2092+3=3+2092
Answered by A5T last updated on 05/Feb/25
Commented by A5T last updated on 05/Feb/25
R=3+10cos(180−θ)=3−10cosθ  AB=10sinθ=10(√(1−cos^2 θ))  (2R)^2 =6^2 +(2AB)^2 ⇒R^2 =3^2 +AB^2   ⇒10cos^2 θ−3cosθ−5=0⇒cosθ=((3+_− (√(209)))/(20))  ⇒R=((3+(√(209)))/2)
R=3+10cos(180θ)=310cosθAB=10sinθ=101cos2θ(2R)2=62+(2AB)2R2=32+AB210cos2θ3cosθ5=0cosθ=3+20920R=3+2092

Leave a Reply

Your email address will not be published. Required fields are marked *