Question Number 216369 by AROUNAMoussa last updated on 05/Feb/25

Answered by AROUNAMoussa last updated on 05/Feb/25

Commented by a.lgnaoui last updated on 06/Feb/25

Answered by a.lgnaoui last updated on 06/Feb/25

Commented by AROUNAMoussa last updated on 06/Feb/25

Commented by a.lgnaoui last updated on 08/Feb/25
![IN^2 =MI^2 +MN^2 −2MN.MIcos (57−x) MP=PIcos x+MIcos (57−x) (1) MJ=NJcos x+MNcos (57−x)(2) MI.MJ=MN.MP ((MP)/(MJ))=((MI)/(MN)) ((MP)/(MJ))=((PIcos x+MI(cos 57cos x+sin 57sin x))/(NJcos x+MN(cos 57cos x+sin 57sin x))) =(([PI+MI(cos 57+sin 57tan x))/(NJ+MN(cos 57+sin 57tan x)))=((MI)/(MN)) MN×PI+MN.MI(cos 57+sin 57tan x) =MI.NJ+MI.MN(cos 57+sin 57tan x) MN.PI=MI.NJ ?((MI)/(MN))=((PI)/(NJ))=((MP)/(MJ)) MI=((MN×PI)/(NJ)) ((sin x)/(MI))=sin x( ((sin (57/t−cos 57))/(PI))) (1/(MI))=((sin 57/t−cos 57))/(PI)) MI/PI=MN/NJ= MI^2 +PI^2 −2MI.PIcos 123=MP^2 MI^2 +MI^2 (sin 57/t−cos 57) −2.MI^2 .(sin 57/t−cos 57)cos 123=MP^2 =MI^2 [1+(sin57/t −cos 57)−2(sin 57/t−cos57 )cos 123 MI^2 [(1+(sin57/t −cos57 )(1−2cos 123)]=MP^2 (((MP)/(MI)))^2 =[1+(sin 57/t−cos 57)(1−cos 123)] ((sin 123)/(MP))=((sin x)/(MI)) ⇒ ((MP)/(MI))=((sin 123)/(sin x)) donc ((sin^2 123)/(sin^2 x))=(1+((sin 57)/t)−cos 57)(1−cos 123) (1/(sin^2 x))=1+(1/t^2 ) ((sin^2 123(1+t^2 ))/t^2 )=(1−cos 223)(((sin 57+t−tcos 57)/t^2 ))t (1−cos 223)(t^2 (1−cos 57)+sin 57t −sin^2 123×t^2 −sin^2 123=0 (1−cos 57)(1−cos 123)t^2 +sin 57(1−cos 223)t −sin^2 123t^2 −sin^2 123=0 l equation finale est: [(1−Cos 57)(1−cos 123)−sin^2 123)]t^2 +sin 57(1−cos 123)t−sin^2 123=0 (1−cos^2 57−sin^2 57)t^2 =0 (sin 57+sin 57cos 57)t=sin^2 57 soit t=((sin 57)/((1+cos 57))) x=28,5 ⇒ { ((∡IBN=57+x=85,5)),((∡JMP=57−x=28,5°)) :}](https://www.tinkutara.com/question/Q216438.png)
Commented by a.lgnaoui last updated on 08/Feb/25
