Menu Close

Question-216369




Question Number 216369 by AROUNAMoussa last updated on 05/Feb/25
Answered by AROUNAMoussa last updated on 05/Feb/25
Determine: mesIB^� N puis mesJM^� P
Determine:mesIBN^puismesJMP^
Commented by a.lgnaoui last updated on 06/Feb/25
Answered by a.lgnaoui last updated on 06/Feb/25
mes(JNP)=mes(JIP)=57
mes(JNP)=mes(JIP)=57
Commented by AROUNAMoussa last updated on 06/Feb/25
et mes(IBN)=?   mes(JMP)=?
etmes(IBN)=?mes(JMP)=?
Commented by a.lgnaoui last updated on 08/Feb/25
IN^2 =MI^2 +MN^2 −2MN.MIcos (57−x)    MP=PIcos x+MIcos (57−x)  (1)  MJ=NJcos x+MNcos (57−x)(2)    MI.MJ=MN.MP  ((MP)/(MJ))=((MI)/(MN))  ((MP)/(MJ))=((PIcos x+MI(cos 57cos x+sin 57sin x))/(NJcos x+MN(cos 57cos x+sin 57sin x)))  =(([PI+MI(cos 57+sin 57tan x))/(NJ+MN(cos 57+sin 57tan x)))=((MI)/(MN))  MN×PI+MN.MI(cos 57+sin 57tan x)  =MI.NJ+MI.MN(cos 57+sin 57tan x)    MN.PI=MI.NJ  ?((MI)/(MN))=((PI)/(NJ))=((MP)/(MJ))  MI=((MN×PI)/(NJ))    ((sin x)/(MI))=sin x( ((sin (57/t−cos 57))/(PI)))  (1/(MI))=((sin 57/t−cos 57))/(PI))  MI/PI=MN/NJ=  MI^2 +PI^2 −2MI.PIcos 123=MP^2   MI^2 +MI^2 (sin 57/t−cos 57)  −2.MI^2 .(sin 57/t−cos 57)cos 123=MP^2     =MI^2 [1+(sin57/t −cos 57)−2(sin 57/t−cos57 )cos 123  MI^2 [(1+(sin57/t −cos57 )(1−2cos 123)]=MP^2           (((MP)/(MI)))^2 =[1+(sin 57/t−cos 57)(1−cos 123)]   ((sin 123)/(MP))=((sin x)/(MI)) ⇒    ((MP)/(MI))=((sin 123)/(sin x))    donc      ((sin^2 123)/(sin^2 x))=(1+((sin 57)/t)−cos 57)(1−cos 123)       (1/(sin^2 x))=1+(1/t^2 )        ((sin^2 123(1+t^2 ))/t^2 )=(1−cos 223)(((sin 57+t−tcos 57)/t^2 ))t    (1−cos 223)(t^2 (1−cos 57)+sin 57t  −sin^2 123×t^2 −sin^2 123=0  (1−cos 57)(1−cos 123)t^2 +sin 57(1−cos 223)t  −sin^2 123t^2 −sin^2 123=0    l equation finale est:  [(1−Cos 57)(1−cos 123)−sin^2 123)]t^2   +sin 57(1−cos 123)t−sin^2 123=0    (1−cos^2 57−sin^2 57)t^2 =0   (sin 57+sin 57cos 57)t=sin^2 57  soit       t=((sin 57)/((1+cos 57)))    x=28,5  ⇒   { ((∡IBN=57+x=85,5)),((∡JMP=57−x=28,5°)) :}
IN2=MI2+MN22MN.MIcos(57x)MP=PIcosx+MIcos(57x)(1)MJ=NJcosx+MNcos(57x)(2)MI.MJ=MN.MPMPMJ=MIMNMPMJ=PIcosx+MI(cos57cosx+sin57sinx)NJcosx+MN(cos57cosx+sin57sinx)=[PI+MI(cos57+sin57tanx)NJ+MN(cos57+sin57tanx)=MIMNMN×PI+MN.MI(cos57+sin57tanx)=MI.NJ+MI.MN(cos57+sin57tanx)MN.PI=MI.NJ?MIMN=PINJ=MPMJMI=MN×PINJsinxMI=sinx(sin(57/tcos57)PI)1MI=sin57/tcos57)PIMI/PI=MN/NJ=MI2+PI22MI.PIcos123=MP2MI2+MI2(sin57/tcos57)2.MI2.(sin57/tcos57)cos123=MP2=MI2[1+(sin57/tcos57)2(sin57/tcos57)cos123MI2[(1+(sin57/tcos57)(12cos123)]=MP2(MPMI)2=[1+(sin57/tcos57)(1cos123)]sin123MP=sinxMIMPMI=sin123sinxdoncsin2123sin2x=(1+sin57tcos57)(1cos123)1sin2x=1+1t2sin2123(1+t2)t2=(1cos223)(sin57+ttcos57t2)t(1cos223)(t2(1cos57)+sin57tsin2123×t2sin2123=0(1cos57)(1cos123)t2+sin57(1cos223)tsin2123t2sin2123=0lequationfinaleest:[(1Cos57)(1cos123)sin2123)]t2+sin57(1cos123)tsin2123=0(1cos257sin257)t2=0(sin57+sin57cos57)t=sin257soitt=sin57(1+cos57)x=28,5{IBN=57+x=85,5JMP=57x=28,5°
Commented by a.lgnaoui last updated on 08/Feb/25

Leave a Reply

Your email address will not be published. Required fields are marked *