Menu Close

If-asin-bcos-acosec-bsec-then-prove-that-each-term-is-equal-to-a-2-3-b-2-3-a-2-3-b-2-3-




Question Number 216421 by MATHEMATICSAM last updated on 07/Feb/25
If asinθ + bcosθ = acosecθ + bsecθ then  prove that each term is equal to  (a^(2/3)  − b^(2/3) )(√(a^(2/3)  + b^(2/3) )).
Ifasinθ+bcosθ=acosecθ+bsecθthenprovethateachtermisequalto(a23b23)a23+b23.
Answered by mr W last updated on 07/Feb/25
a sin θ+b cos θ=(a/(sin θ))+(b/(cos θ))=k, say  a sin θ+b cos θ=k   ...(i)  a cos θ+b sin θ=k sin θ cos θ  ...(ii)  a cos θ+b sin θ=(a sin θ+b cos θ) sin θ cos θ  a cos θ(1−sin^2  θ)+b sin θ (1−cos^2  θ)=0  a cos^3  θ+b sin^3  θ=0  ⇒tan θ=−(a^(1/3) /b^(1/3) )  ⇒sin θ=±(a^(1/3) /( (√(a^(2/3) +b^(2/3) ))))  ⇒cos θ=∓(b^(1/3) /( (√(a^(2/3) +b^(2/3) ))))  k=(a/(sin θ))+(b/(cos θ))     =±(a^(2/3) −b^(2/3) )(√(a^(2/3) +b^(2/3) ))   ✓
asinθ+bcosθ=asinθ+bcosθ=k,sayasinθ+bcosθ=k(i)acosθ+bsinθ=ksinθcosθ(ii)acosθ+bsinθ=(asinθ+bcosθ)sinθcosθacosθ(1sin2θ)+bsinθ(1cos2θ)=0acos3θ+bsin3θ=0tanθ=a13b13sinθ=±a13a23+b23cosθ=b13a23+b23k=asinθ+bcosθ=±(a23b23)a23+b23

Leave a Reply

Your email address will not be published. Required fields are marked *