Menu Close

Prove-that-3-5-2-3-5-2-1-




Question Number 216694 by sniper237 last updated on 16/Feb/25
Prove that ^3 (√((√5)+2)) −^3 (√((√5)−2)) =1
Provethat35+2352=1
Answered by golsendro last updated on 16/Feb/25
 let x= (((√5)+2))^(1/3) −(((√5)−2))^(1/3)    (((√5)+2))^(1/3) −(((√5)−2))^(1/3) −x = 0    (√5) +2 −(√5) +2 −x^3  = 3x ((5−4))^(1/3)     x^3 +3x−4 = 0     x=1
letx=5+235235+23523x=05+25+2x3=3x543x3+3x4=0x=1
Answered by Ghisom last updated on 16/Feb/25
Φ=(1/2)+((√5)/2)  Φ^(−1) =−(1/2)+((√5)/2)  Φ^3 =2+(√5)  Φ^(−3) =−2+(√5)  the rest is easy
Φ=12+52Φ1=12+52Φ3=2+5Φ3=2+5therestiseasy
Answered by Rasheed.Sindhi last updated on 16/Feb/25
(((√5) +2))^(1/3)  −(((√5) −2))^(1/3)  =1  let (((√5) +2))^(1/3)  =a   (((√5) −2))^(1/3)  =1/a  Asume a−(1/a)=x  a^3 −(1/a^3 )−3(a−(1/a))=x^3   ((√5) +2)−((√5) −2)−3(x)=x^3   x^3 +3x−4=0  (x−1)(x^2 +x+4)=0  ⇒x=1
5+23523=1let5+23=a523=1/aAsumea1a=xa31a33(a1a)=x3(5+2)(52)3(x)=x3x3+3x4=0(x1)(x2+x+4)=0x=1
Answered by Rasheed.Sindhi last updated on 16/Feb/25
(((√5) +2))^(1/3)  −(((√5) −2))^(1/3)  =1  let (((√5) +2))^(1/3)  −(((√5) −2))^(1/3)  =x        (((√5) +2))^(1/3)  −(((√5) −2))^(1/3)  −x=0      −((−(√5) −2))^(1/3)  −(((√5) −2))^(1/3)  −x=0      ((−(√5) −2))^(1/3)  +(((√5) −2))^(1/3)  +x=0   determinant (((a+b+c=0_(⇒a^3 +b^3 +c^3 =3abc) )))  ⇒(−(√5) −2)+((√5) −2)+x^3      =3( ((−(√5) −2))^(1/3) )((((√5) −2))^(1/3) )(x)  x^3 −4=−3x((((√5) +2)((√5)−2)))^(1/3)    x^3 +3x(1)−4=0  (x−1)(x^2 +x+4)=0  ⇒x=1(proved)
5+23523=1let5+23523=x5+23523x=0523523x=0523+523+x=0a+b+c=0a3+b3+c3=3abc(52)+(52)+x3=3(523)(523)(x)x34=3x(5+2)(52)3x3+3x(1)4=0(x1)(x2+x+4)=0x=1(proved)

Leave a Reply

Your email address will not be published. Required fields are marked *