Menu Close

0-1-x-ln-2-x-1-x-2-dx-




Question Number 216754 by Tawa11 last updated on 17/Feb/25
∫_( 0) ^( 1)  ((x ln^2 (x))/(1 + x^2 )) dx
01xln2(x)1+x2dx
Answered by issac last updated on 18/Feb/25
∫_( 0) ^( 1)  ((x ln^2 (x))/(1 + x^2 )) dx  u=atan(x)  (du/dx)=(1/(x^2 +1))  → du=(dx/(x^2 +1))  ∫_0 ^( (π/4))  tan(u)ln^2 (tan(u))du...  so Hard to me....  wolfram alpha′s answer is  ∫_0 ^( 1)  ((xln^2 (x))/(x^2 +1))dx=(3/(16))𝛇(3)  𝛇(s)=Σ_(h=1) ^∞  (1/h^s )
01xln2(x)1+x2dxu=atan(x)dudx=1x2+1du=dxx2+10π4tan(u)ln2(tan(u))dusoHardtome.wolframalphasansweris01xln2(x)x2+1dx=316ζ(3)ζ(s)=h=11hs
Commented by Frix last updated on 19/Feb/25
If you cannot solve it, don′t solve it. It′s  really that easy. WolframAlpha′s answer  is useless, we need the path.
Ifyoucannotsolveit,dontsolveit.Itsreallythateasy.WolframAlphasanswerisuseless,weneedthepath.
Commented by mathmax last updated on 23/Feb/25
3/16 ξ(3) is not correct the answer is  ln2 −(π/2)+2k_o      k_0 is catalan constante
3/16ξ(3)isnotcorrecttheanswerisln2π2+2kok0iscatalanconstante
Commented by Tawa11 last updated on 23/Feb/25
Please workings sir.
Pleaseworkingssir.
Answered by Frix last updated on 19/Feb/25
Some steps:  1  ∫((xln^2  x)/(x^2 +1))dx=(1/2)∫((ln^2  x)/(x−i))dx+(1/2)∫((ln^2  x)/(x+i))dx  2  ∫((ln^2  x)/(x+a))dx =^([t=x+a])  ∫((ln^2  (t−a))/t)dt =^([by parts])   =ln (t/a) ln^2  (t−a) −2∫((ln (t/a) ln (t−a))/(t−a))dt  3  ∫((ln (t/a) ln (t−a))/(t−a))dt =^([by parts])   =−ln (t−a) Li_2  (1−(t/a)) +∫((Li_2  (1−(t/a)))/(t−a))dt  4  ∫((Li_2  (1−(t/a)))/(t−a))dt =^([u=1−(t/a)])  ∫((Li_2  u)/u)du=Li_3  u  Not sure what you learned and how you′re  supposed to get the answer...
Somesteps:1xln2xx2+1dx=12ln2xxidx+12ln2xx+idx2ln2xx+adx=[t=x+a]ln2(ta)tdt=[byparts]=lntaln2(ta)2lntaln(ta)tadt3lntaln(ta)tadt=[byparts]=ln(ta)Li2(1ta)+Li2(1ta)tadt4Li2(1ta)tadt=[u=1ta]Li2uudu=Li3uNotsurewhatyoulearnedandhowyouresupposedtogettheanswer

Leave a Reply

Your email address will not be published. Required fields are marked *