Menu Close

Find-0-1-E-x-E-x-dx-




Question Number 216749 by sniper237 last updated on 17/Feb/25
Find  ∫_0 ^∞ (((−1)^(E(x)) )/(E(−x)))dx
Find0(1)E(x)E(x)dx
Answered by mehdee7396 last updated on 18/Feb/25
∫_0 ^∞ (((−1)^(E(x)) )/(E(−x)))=∫_0 ^1 (((−1)^0 )/(e(−x)))+∫_1 ^2 (((−1)^1 )/(e(−x)))+∫_2 ^3 (((−1)^2 )/(e(−x)))+...  =−(∫_0 ^1 dx−∫_1 ^2 (dx/2)+∫_2 ^3 (dx/3)−∫_3 ^4 (dx/4)−...)  =−(1−(1/2)+(1/3)−(1/4)−...)  =−ln2
0(1)E(x)E(x)=10(1)0e(x)+12(1)1e(x)+23(1)2e(x)+=(01dx12dx2+23dx334dx4)=(112+1314)=ln2
Answered by mathmax last updated on 23/Feb/25
I =Σ_(n=0) ^∞ ∫_n ^(n+1) (((−1)^n )/([−x]))dx  n≤x<n+1 ⇒−n−1<−x<−n ⇒  [−x]=−n−1 ⇒I=Σ_(n=0) ^∞ ∫_n ^(n+1) (((−1)^n )/(−n−1))dx  =−Σ_(n=0) ^∞ (((−1)^n )/(n+1))=−Σ_(n=1) ^∞ (((−1)^(n−1) )/n)  =Σ_(n=1) ^∞ (((−1)^n )/n)=−ln2
I=n=0nn+1(1)n[x]dxnx<n+1n1<x<n[x]=n1I=n=0nn+1(1)nn1dx=n=0(1)nn+1=n=1(1)n1n=n=1(1)nn=ln2

Leave a Reply

Your email address will not be published. Required fields are marked *