Menu Close

Prove-that-3-5-2-3-5-2-1-Question-216694-reposted-for-new-answers-




Question Number 216739 by ArshadS last updated on 17/Feb/25
Prove that ^3 (√((√5)+2)) −^3 (√((√5)−2)) =1  Question#216694 reposted for new answers
Provethat35+2352=1You can't use 'macro parameter character #' in math mode
Answered by Rasheed.Sindhi last updated on 17/Feb/25
(((√5) +2))^(1/3)  −(((√5) −2))^(1/3)  =1  let (((√5) +2))^(1/3)  −(((√5) −2))^(1/3)  =x  And   a=(√5) +2 , b=(√5) −2  ⇒a−b=4 , ab=1  a−b=((a)^(1/3)  )^3 −(((b ))^(1/3)  )^3             =((a)^(1/3)  −(b)^(1/3)  )(((a)^(1/3)  )^2 +((b)^(1/3)  )^2 +((a)^(1/3)  )((b)^(1/3) ))            =((a)^(1/3)  −(b)^(1/3)  )(((a)^(1/3)  −(b)^(1/3)  )^2 +3((a)^(1/3)  )((b)^(1/3) ))           4=(x)( (x)^2 +3(1) )  x^3 +3x−4=0  (x−1)(x^2 +x+4)=0  x=1 or x^2 +x+4=0⇒x∉R   proved
5+23523=1let5+23523=xAnda=5+2,b=52ab=4,ab=1ab=(a3)3(b3)3=(a3b3)((a3)2+(b3)2+(a3)(b3))=(a3b3)((a3b3)2+3(a3)(b3))4=(x)((x)2+3(1))x3+3x4=0(x1)(x2+x+4)=0x=1orx2+x+4=0xRproved

Leave a Reply

Your email address will not be published. Required fields are marked *