Menu Close

Question-216722




Question Number 216722 by issac last updated on 17/Feb/25
Answered by MrGaster last updated on 17/Feb/25
∫_0 ^∞ ((1/ℓ)−(1/p))dℓ=∫_0 ^∞ (((p−ℓ)/(ℓp)))dℓ  ∫_0 ^∞ ((1/ℓ)−(1/(ℓ+1))+(1/(ℓ+2))+(1/(ℓ+3))+…)dℓ=lim_(N→∞) [ln(ℓ+1)ln(ℓ+2)+ln(ℓ+3)+…)]_0 ^N   lim_(N→∞) [ln(N)−ln(N+1)(N+2)(N+3)…)]=lim_(N→∞) [ln(N)−ln(N!)]  lim_(N→∞) [ln(N)−(N ln(N)−N+(1/2)ln(2πN)+O((1/N)))]=∞  diverges
0(11p)d=0(pp)d0(11+1+1+2+1+3+)d=limN[ln(+1)ln(+2)+ln(+3)+)]0NlimN[ln(N)ln(N+1)(N+2)(N+3))]=limN[ln(N)ln(N!)]limN[ln(N)(Nln(N)N+12ln(2πN)+O(1N))]=diverges

Leave a Reply

Your email address will not be published. Required fields are marked *