Menu Close

Question-216734




Question Number 216734 by mnjuly1970 last updated on 17/Feb/25
Answered by sniper237 last updated on 18/Feb/25
Let E={f:A→B}  , ∣E∣=3^m    E\S={f∈E,  ∣f(A)∣=1 or 2}  ∣E\S∣= C_3 ^1 .1^m +C_3 ^2 .(2^m −1^m −1^m )=3.2^m −3  So  ∣S∣=3^m −(3.2^m −3)
LetE={f:AB},E∣=3mES={fE,f(A)∣=1or2}ES∣=C31.1m+C32.(2m1m1m)=3.2m3SoS∣=3m(3.2m3)
Commented by mehdee7396 last updated on 18/Feb/25
note : 3^m −(3×2^m −3)≠3^m −3×2^m −3
note:3m(3×2m3)3m3×2m3
Commented by mnjuly1970 last updated on 18/Feb/25
 thanks alot...
thanksalot
Answered by mehdee7396 last updated on 19/Feb/25
let  A={a_i : 1≤i≤m} &  B={b_1 ,b_2 ,b_3 }  F={f:A→B∣f(a)=b  ;a∈A , b∈B}  f_1 ={f:A→B∣f(a_i )≠b_1 }  f_2 ={f:A→B∣f(a_2 )≠b_2 }  f_3 ={f:A→B∣f(a_i )≠b_3 }  ⇒∣F∣=3^m   &  ∣f_i ∣=2^m  &  ∣f_i ∩f_j ∣=1  &  ∣f_1 ∩f_2 ∩f_3 ∣=0  ⇒∣S∣=∣F∣−Σ∣f_i ∣+Σ∣f_i ∩f_j ∣−∣f_1 ∩f_2 ∩f_3 ∣  =3^m −3×2^m +3
letA={ai:1im}&B={b1,b2,b3}F={f:ABf(a)=b;aA,bB}f1={f:ABf(ai)b1}f2={f:ABf(a2)b2}f3={f:ABf(ai)b3}⇒∣F∣=3m&fi∣=2m&fifj∣=1&f1f2f3∣=0⇒∣S∣=∣FΣfi+Σfifjf1f2f3=3m3×2m+3

Leave a Reply

Your email address will not be published. Required fields are marked *