Menu Close

given-the-recursive-a-n-define-by-setting-a-1-0-1-a-n-1-a-n-1-a-n-n-1-prove-that-1-lim-n-na-n-1-2-b-n-n-1-na-n-is-a-incresing-sequence-and




Question Number 216785 by universe last updated on 20/Feb/25
   given the recursive {a_n } define by setting    a_(1 )  ∈ (0,1)   ,    a_(n+1)  = a_n (1−a_n )   , n≥1    prove that  (1)   lim_(n→∞)  na_n = 1    (2)  b_n  = n(1−na_n ) is a incresing sequence     and diverge to ∞     (3) lim_(n→∞)  ((n(1−na_n ))/(ln(n))) = 1
giventherecursive{an}definebysettinga1(0,1),an+1=an(1an),n1provethat(1)limnnan=1(2)bn=n(1nan)isaincresingsequenceanddivergeto(3)limnn(1nan)ln(n)=1

Leave a Reply

Your email address will not be published. Required fields are marked *