Prove-x-R-cos-x-cos-2x-cos-nx-n-1-2-n-Z-gt-0- Tinku Tara February 22, 2025 None 0 Comments FacebookTweetPin Question Number 216830 by MrGaster last updated on 22/Feb/25 Prove:∀x∈R,∣cosx∣+∣cos2x∣+…+∣cosnx∣≥n−12(n∈Z>0) Commented by MathematicalUser2357 last updated on 25/Feb/25 Oryoucoulddo{n∣n∈Z∧n>0}(or{n∣n∈N}) Answered by MrGaster last updated on 23/Feb/25 Prove:∑nk=1∣cos(kπ)∣≥n−12(n∈Z>0)LetSn(x)=∑nk=1∣cos(kx)∣⇒Sn(x)=∣cos(x)∣+∣cos(2x)∣+…+∣cos(nx)∣ConsiderTn(x)=∑nk=1cos(kπ)=sin(nx2)cos((n+1)x2)sin(x2)⇒∣Tn(x)∣≤1∣sin(x2)∣LetUn(x)=∑nk=1cos2(kπ)=n2+12∑nk=1cos(2kx)=n2+12(sin(nx)cos((n+1)x)sin(x))⇒Un(x)≤n2+12∵∣cos(kx)∣≥cos2(kx)⇒Sn(x)≥Un(x)⇒Sn(x)≥n2−12∴Sn(x)≥n−12[Q.E.D] Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Prove-that-n-d-n-d-n-d-n-d-n-d-n-d-n-l-and-Eyler-f-Next Next post: Let-p-be-a-prime-number-greater-than-3-Prove-that-p-2-1-is-always-divisible-by-24- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.