Menu Close

give-a-recurrence-relation-for-I-n-I-n-0-1-x-n-x-3-dx-n-N-




Question Number 216918 by mathocean1 last updated on 24/Feb/25
give a recurrence relation for I_n .  I_n =∫_0 ^1 (x^n /(x+3))dx, ∀n ∈ N.
givearecurrencerelationforIn.In=01xnx+3dx,nN.
Answered by Wuji last updated on 24/Feb/25
I_n =∫_0 ^1 (x^n /(x+3))dx ,∀n∈N  (x^n =x^(n−1) x=x^(n−1) ((x+3)−3)  (x^n /(x+3))=((x^(n−1) ((x+3)−3))/((x+3)))=x^(n−1) −3(x^(n−1) /(x+3))  I_n =∫_0 ^1 (x^n /(x+3))dx =∫_0 ^1 (x^(n−1) −3(x^(n−1) /(x+3)))dx  ∫_0 ^1 x^(n−1) dx=(1/n)    , ∫_0 ^1 (x^(n−1) /(x−3))dx=I_(n−1)   I_n =(1/n)−3I_(n−1)
In=10xnx+3dx,nN(xn=xn1x=xn1((x+3)3)xnx+3=xn1((x+3)3)(x+3)=xn13xn1x+3In=10xnx+3dx=10(xn13xn1x+3)dx10xn1dx=1n,10xn1x3dx=In1In=1n3In1
Commented by mathocean1 last updated on 24/Feb/25
Thank you sir...
Thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *