Menu Close

Question-216919




Question Number 216919 by Abdullahrussell last updated on 24/Feb/25
Answered by Wuji last updated on 24/Feb/25
α^3 −3α^2 +5α−17=0−−−−−1  β^3 −3β^2 +5β+11=0−−−−−2  (1)+(2)  α^3 +β^3 −3α^2 −3β^2 +5α+5β−6=0  α^3 +β^3 −3(α^2 +β^2 )+5(α+β)−6=0  α^2 +β^2 =(α+β)^2 −2αβ  let α+β=S , αβ=P  α^3 +β^3 =S(S^2 −3P)  S(S^2 −3P)−3(S^2 −2P)+5S−6=0  S^3 −3S^2 −3SP+5S+6P−6=0  S^3 −3S^2 +5S−6−3SP+6P=0  S^3 −3S^2 +5S−6+P(−3S+6)=0  (S−2)(S^2 −S+3)+P(−3S+6)=0  (S−2)(S^2 −S+3)=0  S=2  Thus P(−3S+6) vanishes since S=2  S=α+β=2
α33α2+5α17=01β33β2+5β+11=02(1)+(2)α3+β33α23β2+5α+5β6=0α3+β33(α2+β2)+5(α+β)6=0α2+β2=(α+β)22αβletα+β=S,αβ=Pα3+β3=S(S23P)S(S23P)3(S22P)+5S6=0S33S23SP+5S+6P6=0S33S2+5S63SP+6P=0S33S2+5S6+P(3S+6)=0(S2)(S2S+3)+P(3S+6)=0(S2)(S2S+3)=0S=2ThusP(3S+6)vanishessinceS=2S=α+β=2
Answered by Frix last updated on 25/Feb/25
x=α−1∧y=β−1  x^3 +2x−14=0  y^3 +2y+14=0  (x^3 +y^3 )+2(x+y)=0  (x+y)(x^2 −xy+y^2 +2)=0  x+y=0  α+β=2
x=α1y=β1x3+2x14=0y3+2y+14=0(x3+y3)+2(x+y)=0(x+y)(x2xy+y2+2)=0x+y=0α+β=2
Commented by Abdullahrussell last updated on 25/Feb/25
  Sir, great solutions. Thanks.
Sir,greatsolutions.Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *