show-that-n-n-1-ln-t-dt-ln-n-1-2-Given-u-n-4n-n-n-e-n-2n-n-1-prove-using-the-preceding-question-that-u-n-is-decreasing-and-convergent- Tinku Tara February 28, 2025 Coordinate Geometry 0 Comments FacebookTweetPin Question Number 217088 by alcohol last updated on 28/Feb/25 showthat∫nn+1ln(t)dt⩽ln(n+12)Givenun=(4n)nn!e−n(2n)!,∀n⩾1prove,usingtheprecedingquestionthatunisdecreasingandconvergent Answered by MrGaster last updated on 01/Mar/25 Prove:∫nn+1ln(t)dt≤ln(n+12)∫nn+1ln(t)dt=[tln(t)−t]nn+1=((n+1)+ln(n+1)−(n+1)−(nln(n)−n)=(n+1)ln(n+1)−nln(n)−1ln(n+1)≤ln(n)+1n⊢(n+1)ln(n+1)≤(n+1)(ln(n)+1n)=(n+1)ln(n)+(n+1)1n=(n+1)ln(n)+11n∴(n+1)ln(n+1)−nln(n)−1≤((n+1)ln(n)+1+1n)−nln(n)−1=ln(n)+1n∵1n≤ln(1+12n)⇒ln(n)+1n≤ln(n)+ln(1+12n)=ln(n(1+12n))=ln(n+12)so,∫nn+1ln(t)dt≤ln(n+12)Giveun=(4n)nn!e−n(2n)!,∀n≥1,Provethatunisdecreasingandconverhgent.Part1:Proveunisdecreasing.Considertheratio:un+1un=(4(n+1)n+1(n+1)!e−(n+1)(2(n+1)!(4n)ne−n(2n)!=(4(n+1))n+1(n+1)e−1(4n)n(2n+2)(2n+1)=4n+1(n+1)n+1(n+1)e−14nnn(2n+2)(2n+1)=4(n+1)n+2e−1nn2(n+1)(2n+1)=2(n+1)n+1e−1nn(2n+1)∵(n+1)n+1>nn+1⇒(n+1)n−1nn>1∴un+1un<1forlargen,implyingunisdecreasing.Step2:Proveunisconvergent.Usingstirling′sapproximationn!≈2πn(ne)n⇒un=(4n)nn!e−n(2n)!≈(4n)n2πn(ne)ne−n4πn(2ne)2n=(4n)n2πnnne−2n4πn22nn2n=2πn4nnne−2n4πn2nn2n=2π4ne−2n4π22nnn=222ne−2n222nnn=e2nnnAsn→∞,e−2n→0andnn→∞,soun→0.Thus,unisconvergent.unisdecreasingandconvergent Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: The-quadratic-equation-has-two-equal-roots-x-2-k-3-x-k-0-a-Find-the-value-of-k-b-For-this-value-of-k-solve-the-equation-for-x-c-If-x-is-the-length-of-a-rectangle-and-its-width-is-x-Next Next post: Find-all-integer-x-y-such-that-x-2-y-2-100- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.