Menu Close

show-that-n-n-1-ln-t-dt-ln-n-1-2-Given-u-n-4n-n-n-e-n-2n-n-1-prove-using-the-preceding-question-that-u-n-is-decreasing-and-convergent-




Question Number 217088 by alcohol last updated on 28/Feb/25
show that ∫_( n) ^( n + 1) ln(t) dt ≤ ln(n + (1/2))  Given u_n  = (((4n)^n n!e^(−n) )/((2n)!)), ∀n ≥ 1  prove, using the preceding question that  u_n  is decreasing and convergent
showthatnn+1ln(t)dtln(n+12)Givenun=(4n)nn!en(2n)!,n1prove,usingtheprecedingquestionthatunisdecreasingandconvergent
Answered by MrGaster last updated on 01/Mar/25
Prove:∫_n ^(n+1) ln(t)dt≤ln(n+(1/2))  ∫_n ^(n+1) ln(t)dt=[t ln(t)−t]_n ^(n+1)   =((n+1)+ln(n+1)−(n+1)−(n ln(n)−n)  =(n+1)ln(n+1)−n ln(n)−1  ln(n+1)≤ln(n)+(1/n) ⊢(n+1)ln(n+1)≤(n+1)(ln(n)+(1/n))  =(n+1)ln(n)+(n+1)(1/n)  =(n+1)ln(n)+1(1/n)  ∴(n+1)ln(n+1)−n ln(n)−1≤((n+1)ln(n)+1+(1/n))−n ln(n)−1  =ln(n)+(1/n)  ∵(1/n)≤ln(1+(1/(2n)))⇒ln(n)+(1/n)≤ln(n)+ln(1+(1/(2n)))  =ln(n(1+(1/(2n))))  =ln(n+(1/2))  so, determinant (((∫_n ^(n+1) ln(t)dt≤ln(n+(1/2)))))  Give u_n =(((4n)^n n!e^(−n) )/((2n)!)),∀n≥1,Prove that u_n is decreasing and converhgent.  Part 1:Prove u_n is decreasing.  Consider the ratio:  (u_(n+1) /u_n )=((((4(n+1)^(n+1) (n+1)!e^(−(n+1)) )/((2(n+1)!))/(((4n)^n e^(−n) )/((2n)!)))  =(((4(n+1))^(n+1) (n+1)e^(−1) )/((4n)^n (2n+2)(2n+1)))  =((4^(n+1) (n+1)^(n+1) (n+1)e^(−1) )/(4^n n^n (2n+2)(2n+1)))  =((4(n+1)^(n+2) e^(−1) )/(n^n 2(n+1)(2n+1)))  =((2(n+1)^(n+1) e^(−1) )/(n^n (2n+1)))  ∵(n+1)^(n+1) >n^(n+1) ⇒(((n+1)^(n−1) )/n^n )>1  ∴(u_(n+1) /u_n )<1 for large n,implying u_n is decreasing.  Step 2:Prove u_n is convergent.Using stirling′s approximation n!≈(√(2πn))((n/e))^n ⇒u_n =(((4n)^n n!e^(−n) )/((2n)!))≈(((4n)^n (√(2πn))((n/e))^n e^(−n) )/( (√(4πn))(((2n)/e))^(2n) ))  =(((4n)^n (√(2πn))n^n e^(−2n) )/( (√(4πn))2^(2n) n^(2n) ))  =(((√(2πn))4^n n^n e^(−2n) )/( (√(4πn))2^n n^(2n) ))  =(((√(2π))4^n e^(−2n) )/( (√(4π))2^(2n) n^n ))  =(((√2)2^(2n) e^(−2n) )/( (√2)2^(2n) n^n ))  =(e^(2n) /n^n )  As n→∞,e^(−2n) →0 and n^n →∞,so u_n →0.Thus,u_n is convergent.   determinant (((u_n is decreasing and convergent)))
Prove:nn+1ln(t)dtln(n+12)nn+1ln(t)dt=[tln(t)t]nn+1=((n+1)+ln(n+1)(n+1)(nln(n)n)=(n+1)ln(n+1)nln(n)1ln(n+1)ln(n)+1n(n+1)ln(n+1)(n+1)(ln(n)+1n)=(n+1)ln(n)+(n+1)1n=(n+1)ln(n)+11n(n+1)ln(n+1)nln(n)1((n+1)ln(n)+1+1n)nln(n)1=ln(n)+1n1nln(1+12n)ln(n)+1nln(n)+ln(1+12n)=ln(n(1+12n))=ln(n+12)so,nn+1ln(t)dtln(n+12)Giveun=(4n)nn!en(2n)!,n1,Provethatunisdecreasingandconverhgent.Part1:Proveunisdecreasing.Considertheratio:un+1un=(4(n+1)n+1(n+1)!e(n+1)(2(n+1)!(4n)nen(2n)!=(4(n+1))n+1(n+1)e1(4n)n(2n+2)(2n+1)=4n+1(n+1)n+1(n+1)e14nnn(2n+2)(2n+1)=4(n+1)n+2e1nn2(n+1)(2n+1)=2(n+1)n+1e1nn(2n+1)(n+1)n+1>nn+1(n+1)n1nn>1un+1un<1forlargen,implyingunisdecreasing.Step2:Proveunisconvergent.Usingstirlingsapproximationn!2πn(ne)nun=(4n)nn!en(2n)!(4n)n2πn(ne)nen4πn(2ne)2n=(4n)n2πnnne2n4πn22nn2n=2πn4nnne2n4πn2nn2n=2π4ne2n4π22nnn=222ne2n222nnn=e2nnnAsn,e2n0andnn,soun0.Thus,unisconvergent.unisdecreasingandconvergent

Leave a Reply

Your email address will not be published. Required fields are marked *