Menu Close

Let-x-y-z-be-real-numbers-satisfying-the-equations-x-y-z-7-xy-yz-zx-10-xyz-6-Find-the-value-of-x-3-y-3-z-3-




Question Number 217377 by ArshadS last updated on 12/Mar/25
Let x,y,z be real numbers satisfying the equations  x + y + z= 7  xy + yz + zx=10  xyz=6  Find the value of  x^3  + y^3  + z^3
Letx,y,zberealnumberssatisfyingtheequationsx+y+z=7xy+yz+zx=10xyz=6Findthevalueofx3+y3+z3
Answered by Rasheed.Sindhi last updated on 12/Mar/25
 { ((x + y + z= 7...(i))),((xy + yz + zx=10...(ii))),((xyz=6...(iii))),((x^3  + y^3  + z^3 =?)) :}  (i)^2 : x^2 +y^2 +z^2 +2(xy+yz+zx)=49        x^2 +y^2 +z^2 +2(10)=49       x^2 +y^2 +z^2 =29  x^3  + y^3  + z^3 −3xyz=(x+y+z)(x^2 +y^2 +z^2 −(xy+yz+zx) )  x^3  + y^3  + z^3 −3(6)=(7)(29−(10) )  x^3  + y^3  + z^3 =18+(7)(29−(10) )                           =18+133=151
{x+y+z=7(i)xy+yz+zx=10(ii)xyz=6(iii)x3+y3+z3=?(i)2:x2+y2+z2+2(xy+yz+zx)=49x2+y2+z2+2(10)=49x2+y2+z2=29x3+y3+z33xyz=(x+y+z)(x2+y2+z2(xy+yz+zx))x3+y3+z33(6)=(7)(29(10))x3+y3+z3=18+(7)(29(10))=18+133=151
Commented by ArshadS last updated on 13/Mar/25
Thanks sir!
Thankssir!
Answered by mr W last updated on 12/Mar/25
(x+y+z)^3 =x^3 +y^3 +z^3 −3xyz+3(x+y+z)(xy+yz+zx)  7^3 =x^3 +y^3 +z^3 −3×6+3×7×10  ⇒x^3 +y^3 +z^3 =7^3 +3×6−3×7×10=151
(x+y+z)3=x3+y3+z33xyz+3(x+y+z)(xy+yz+zx)73=x3+y3+z33×6+3×7×10x3+y3+z3=73+3×63×7×10=151
Commented by ArshadS last updated on 13/Mar/25
Thanks sir!
Thankssir!

Leave a Reply

Your email address will not be published. Required fields are marked *