Menu Close

f-R-R-f-f-x-x-2-x-1-f-x-Altered-Question-217541-




Question Number 217579 by Rasheed.Sindhi last updated on 16/Mar/25
f : R → R  f(f(x)) = x^2  − x + 1  f(x) = ?  Altered Question# 217541
f:RRf(f(x))=x2x+1f(x)=?You can't use 'macro parameter character #' in math mode
Commented by Ghisom last updated on 16/Mar/25
I thought of this, there might be no closed  term for f(x)  because:  g(g(x))=x^2  ⇒ g(x)=x^(√2)        [not possible for x<0]  but if we try to add terms:  g(x)=x^(√2) +c ⇒ g(g(x))=(x^(√2) +c)^(√2) +c  g(x)=x^(√2) +h(x) ⇒ weirdness
Ithoughtofthis,theremightbenoclosedtermforf(x)because:g(g(x))=x2g(x)=x2[notpossibleforx<0]butifwetrytoaddterms:g(x)=x2+cg(g(x))=(x2+c)2+cg(x)=x2+h(x)weirdness
Commented by mr W last updated on 16/Mar/25
with given condition we can find   f(0), f(1),  but we can even not find   f(2) etc., not to mention f(x)  generally. i think.
withgivenconditionwecanfindf(0),f(1),butwecanevennotfindf(2)etc.,nottomentionf(x)generally.ithink.
Commented by Rasheed.Sindhi last updated on 16/Mar/25
Thanks sirs!
Thankssirs!
Commented by Ghisom last updated on 17/Mar/25
just to explore some problems:  g(x)=ax^2 +bx+c  G(x)=Ax^4 +Bx^3 +Cx^2 +Dx+E=g(g(x))=  A=a^3   B=2a^2 b  C=a(2ac+b(b+1))  D=(2ac+b)b  E=(ac+b+1)c  this cannot be solved for every given quintuplet  A, B, C, D, E    even if we want G(x)=x^4 +Cx^2 +E  ⇒ a=1∧b=0        g(x)=x^2 +c        G(x)=x^4 +2cx^2 +c(c+1)  only very few are possible...
justtoexploresomeproblems:g(x)=ax2+bx+cG(x)=Ax4+Bx3+Cx2+Dx+E=g(g(x))=A=a3B=2a2bC=a(2ac+b(b+1))D=(2ac+b)bE=(ac+b+1)cthiscannotbesolvedforeverygivenquintupletA,B,C,D,EevenifwewantG(x)=x4+Cx2+Ea=1b=0g(x)=x2+cG(x)=x4+2cx2+c(c+1)onlyveryfewarepossible

Leave a Reply

Your email address will not be published. Required fields are marked *