Menu Close

Solve-5x-2-y-x-1-x-y-y-0-




Question Number 217797 by Tawa11 last updated on 21/Mar/25
Solve:       5x^2  y′′  +   x(1  +  x) y′  −  y   =   0
Solve:5x2y+x(1+x)yy=0
Answered by AntonCWX8 last updated on 22/Mar/25
I.F, μ(x)=(1/(5x^2 ))e^(∫((x(1+x))/(5x^2 ))dx) =(1/(5x^2 ))e^(∫((1+x)/(5x))dx) =(1/(5x^2 ))e^(((ln(x))/5)+(x/5))   Multiply through  e^((ln(x)+x)/5) y′′ + (((1+x))/(5x))e^((ln(x)+x)/5) y′ − (1/(5x^2 ))e^((ln(x)+x)/5) y=0  Rewrite in Sturm−Liouville Form gives  (e^((ln(x)+x)/5) y′)′ −(1/(5x^2 ))e^((ln(x)+x)/5) y=0  Stuck here
I.F,μ(x)=15x2ex(1+x)5x2dx=15x2e1+x5xdx=15x2eln(x)5+x5Multiplythrougheln(x)+x5y+(1+x)5xeln(x)+x5y15x2eln(x)+x5y=0RewriteinSturmLiouvilleFormgives(eln(x)+x5y)15x2eln(x)+x5y=0Stuckhere
Answered by vnm last updated on 22/Mar/25
let p be any real number  y=p(x+Σ_(n=2) ^∞ (((−1)^(n−1) x^n )/(Π_(k=2) ^n (5k+1))))
letpbeanyrealnumbery=p(x+n=2(1)n1xnnk=2(5k+1))
Commented by Tawa11 last updated on 22/Mar/25
Please workings sir.
Pleaseworkingssir.
Answered by vnm last updated on 22/Mar/25
y=Σ_(n=0) ^∞ a_n x^n   y′=Σ_(n=1) ^∞ a_n nx^(n−1) =Σ_(n=0) ^∞ a_(n+1) (n+1)x^n   y′′=Σ_(n=1) ^∞ a_(n+1) (n+1)nx^(n−1) =Σ_(n=0) ^∞ a_(n+2) (n+2)(n+1)x^n   xy′=Σ_(n=0) ^∞ a_(n+1) (n+1)x^(n+1) =a_1 x+Σ_(n=2) ^∞ a_n nx^n   x^2 y′=Σ_(n=0) ^∞ a_(n+1) (n+1)x^(n+2) =Σ_(n=2) ^∞ a_(n−1) (n−1)x^n   5x^2 y′′=Σ_(n=0) ^∞ 5a_(n+2) (n+2)(n+1)x^(n+2) =Σ_(n=2) ^∞ 5a_n n(n−1)x^n   a_0 =0  a_1 x=a_1 x ⇒ a_1 =p, p is any real number  a_n n+a_(n−1) (n−1)+5a_n n(n−1)−a_n =0  a_n (n−1)+a_(n−1) (n−1)+5a_n n(n−1)=0  a_n +a_(n−1) +5a_n n=0  a_n =−(a_(n−1) /(5n+1))  a_1 =p  a_2 =−(a_1 /(5∙2+1))=−(p/(11))  a_3 =−(a_2 /(5∙3+1))=(p/(11∙16))  and so on
y=n=0anxny=n=1annxn1=n=0an+1(n+1)xny=n=1an+1(n+1)nxn1=n=0an+2(n+2)(n+1)xnxy=n=0an+1(n+1)xn+1=a1x+n=2annxnx2y=n=0an+1(n+1)xn+2=n=2an1(n1)xn5x2y=n=05an+2(n+2)(n+1)xn+2=n=25ann(n1)xna0=0a1x=a1xa1=p,pisanyrealnumberann+an1(n1)+5ann(n1)an=0an(n1)+an1(n1)+5ann(n1)=0an+an1+5ann=0an=an15n+1a1=pa2=a152+1=p11a3=a253+1=p1116andsoon
Commented by Tawa11 last updated on 23/Mar/25
Thanks sir.
Thankssir.

Leave a Reply

Your email address will not be published. Required fields are marked *