Menu Close

Given-a-regular-triangle-ABC-AG-2GC-CK-2KB-AK-BG-M-Prove-that-CM-AK-




Question Number 217931 by CrispyXYZ last updated on 23/Mar/25
Given a regular triangle ABC.  AG=2GC. CK=2KB. AK∩BG=M.  Prove that CM⊥AK.
GivenaregulartriangleABC.AG=2GC.CK=2KB.AKBG=M.ProvethatCMAK.
Commented by CrispyXYZ last updated on 23/Mar/25
Answered by mr W last updated on 23/Mar/25
Commented by mr W last updated on 23/Mar/25
((CG)/(GA))×((AM)/(MK))×((KB)/(BC))=1  (1/2)×((AM)/(MK))×(1/3)=1  ⇒((AM)/(MK))=(6/1)  ⇒AM=((6×AK)/7)  ((CK)/(KB))×((BM)/(MG))×((GA)/(AC))=1  (2/1)×((BM)/(MG))×(2/3)=1  ⇒((BM)/(MG))=(3/4)  ⇒BM=((3×BG)/7)  since BG=AK,  ⇒BM=((AM)/2)    α=α_1 +α_2   β=α_1 +β_1   make ΔABN≡ΔBCM  ∠MBN=α_1 +α_2 =60°  ΔBMN is equilateral.  BN//MA  ∠AMN=60°  MN=BM=((AM)/2)  ⇒∠MAN=α_1 +β_1 =30°  ∠AMC=α+β=α_1 +α_2 +α_1 +β_1                   =60°+α_1 +β_1                   =60°+30°=90°  ⇒CM⊥AK
CGGA×AMMK×KBBC=112×AMMK×13=1AMMK=61AM=6×AK7CKKB×BMMG×GAAC=121×BMMG×23=1BMMG=34BM=3×BG7sinceBG=AK,BM=AM2α=α1+α2β=α1+β1makeΔABNΔBCMMBN=α1+α2=60°ΔBMNisequilateral.BN//MAAMN=60°MN=BM=AM2MAN=α1+β1=30°AMC=α+β=α1+α2+α1+β1=60°+α1+β1=60°+30°=90°CMAK
Answered by A5T last updated on 23/Mar/25
Commented by A5T last updated on 23/Mar/25
WLOG, let AB=BC=CA=3⇒BK=1  ((AD)/(DB))×((BK)/(KC))×((CG)/(GA))=1⇒((AD)/(DB))=4⇒AD=((12)/5)  AK=(√(BK^2 +AB^2 −2BK×ABcos60))=(√7)  ((AM)/(MK))=((AD)/(DB))+((AG)/(GC))=4+2=6⇒AM=((6(√7))/( 7))  CD=(√(AD^2 +AC^2 −2AD×ACcos60))=(√((189)/(25)))  ((CM)/(MD))=((CG)/(GA))+((CK)/(CB))=(5/2)⇒DM=((2(√(189)))/( 7×5))  AM^2 +DM^2 =((4×27)/(7×5^2 ))+((36)/7)=((144)/(25))=AD^2   ⇒∠AMD=90°⇒∠AMC=90°⇒CM⊥AK
WLOG,letAB=BC=CA=3BK=1ADDB×BKKC×CGGA=1ADDB=4AD=125AK=BK2+AB22BK×ABcos60=7AMMK=ADDB+AGGC=4+2=6AM=677CD=AD2+AC22AD×ACcos60=18925CMMD=CGGA+CKCB=52DM=21897×5AM2+DM2=4×277×52+367=14425=AD2AMD=90°AMC=90°CMAK

Leave a Reply

Your email address will not be published. Required fields are marked *