Menu Close

Question-217881




Question Number 217881 by OmoloyeMichael last updated on 23/Mar/25
Answered by vnm last updated on 23/Mar/25
∫_0 ^(π/2) x(((sin x)/(1+cos^2 x))+((cos x)/(1+sin^2 x)))dx=I  f(x)=((sin x)/(1+cos^2 x))+((cos x)/(1+sin^2 x))  F(x)=∫f(x)dx=−∫((d(cos x))/(1+cos^2 x))+∫((d(sin x))/(1+sin^2 x))=  −tan^(−1) (cos x)+tan^(−1) (sin x)  I=xF(x)∣_0 ^(π/2) −∫_0 ^(π/2) (x)′F(x)dx=(π^2 /8)−∫_0 ^(π/2) F(x)dx  F(x)=_(0≤x≤(π/2)) −F((π/2)−x) ⇒ ∫_0 ^(π/2) F(x)dx=0  I=(π^2 /8)
0π/2x(sinx1+cos2x+cosx1+sin2x)dx=If(x)=sinx1+cos2x+cosx1+sin2xF(x)=f(x)dx=d(cosx)1+cos2x+d(sinx)1+sin2x=tan1(cosx)+tan1(sinx)I=xF(x)0π/20π/2(x)F(x)dx=π280π/2F(x)dxF(x)=0xπ2F(π2x)0π/2F(x)dx=0I=π28
Answered by mr W last updated on 23/Mar/25
I=∫_0 ^(π/2) x(((sin x)/(1+cos^2  x))+((cos x)/(1+sin^2  x)))dx=I_1 +I_2   I_1 =∫_0 ^(π/2) x(((sin x)/(1+cos^2  x)))dx  I_2 =∫_0 ^(π/2) x(((cos x)/(1+sin^2  x)))dx     =∫_0 ^(π/2) (x−(π/2)+(π/2))(((cos (x−(π/2)+(π/2)))/(1+sin^2  (x−(π/2)+(π/2)))))d(x−(π/2))     =∫_(−(π/2)) ^0 (t+(π/2))(((cos (t+(π/2)))/(1+sin^2  (t+(π/2)))))dt     =∫_0 ^(−(π/2)) (t+(π/2))(((sin t)/(1+cos^2  t)))dt     =∫_0 ^(−(π/2)) t(((sin t)/(1+cos^2  t)))dt+(π/2)∫_0 ^(−(π/2)) (((sin t)/(1+cos^2  t)))dt     =−I_1 +(π/2)∫_0 ^(π/2) ((sin t)/(1+cos^2  t))dt     =−I_1 −(π/2)∫_0 ^(π/2) ((d(cos t))/(1+cos^2  t))     =−I_1 −(π/2)[tan^(−1) (cos t)]_0 ^(π/2)      =−I_1 −(π/2)(0−(π/4))     =−I_1 +(π^2 /8)  ⇒I=I_1 +I_2 =(π^2 /8)
I=0π2x(sinx1+cos2x+cosx1+sin2x)dx=I1+I2I1=0π2x(sinx1+cos2x)dxI2=0π2x(cosx1+sin2x)dx=0π2(xπ2+π2)(cos(xπ2+π2)1+sin2(xπ2+π2))d(xπ2)=π20(t+π2)(cos(t+π2)1+sin2(t+π2))dt=0π2(t+π2)(sint1+cos2t)dt=0π2t(sint1+cos2t)dt+π20π2(sint1+cos2t)dt=I1+π20π2sint1+cos2tdt=I1π20π2d(cost)1+cos2t=I1π2[tan1(cost)]0π2=I1π2(0π4)=I1+π28I=I1+I2=π28

Leave a Reply

Your email address will not be published. Required fields are marked *