Question-217881 Tinku Tara March 23, 2025 Integration 0 Comments FacebookTweetPin Question Number 217881 by OmoloyeMichael last updated on 23/Mar/25 Answered by vnm last updated on 23/Mar/25 ∫0π/2x(sinx1+cos2x+cosx1+sin2x)dx=If(x)=sinx1+cos2x+cosx1+sin2xF(x)=∫f(x)dx=−∫d(cosx)1+cos2x+∫d(sinx)1+sin2x=−tan−1(cosx)+tan−1(sinx)I=xF(x)∣0π/2−∫0π/2(x)′F(x)dx=π28−∫0π/2F(x)dxF(x)=0⩽x⩽π2−F(π2−x)⇒∫0π/2F(x)dx=0I=π28 Answered by mr W last updated on 23/Mar/25 I=∫0π2x(sinx1+cos2x+cosx1+sin2x)dx=I1+I2I1=∫0π2x(sinx1+cos2x)dxI2=∫0π2x(cosx1+sin2x)dx=∫0π2(x−π2+π2)(cos(x−π2+π2)1+sin2(x−π2+π2))d(x−π2)=∫−π20(t+π2)(cos(t+π2)1+sin2(t+π2))dt=∫0−π2(t+π2)(sint1+cos2t)dt=∫0−π2t(sint1+cos2t)dt+π2∫0−π2(sint1+cos2t)dt=−I1+π2∫0π2sint1+cos2tdt=−I1−π2∫0π2d(cost)1+cos2t=−I1−π2[tan−1(cost)]0π2=−I1−π2(0−π4)=−I1+π28⇒I=I1+I2=π28 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Solve-2x-7-x-1-2-Next Next post: Solve-x-1-x-2-x-1-x-2-2x-1-x-1-2x-1-x-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.