Menu Close

Solve-x-2-y-2-xy-19-x-y-5-




Question Number 218036 by dscm last updated on 26/Mar/25
Solve   x^2  + y^2  + xy = 19    x + y= 5
Solvex2+y2+xy=19x+y=5
Answered by Hanuda354 last updated on 26/Mar/25
 x^2  + y^2  + xy = 19   (x+y)^2  − xy = 19              5^2  − xy = 19             25 − xy = 19                   ⇔ xy = 6    Then  we get:    (x,y) = (2,3),(3,2)
x2+y2+xy=19(x+y)2xy=1952xy=1925xy=19xy=6Thenweget:(x,y)=(2,3),(3,2)
Answered by dscm last updated on 26/Mar/25
 x^2  + y^2  + xy = 19 ....(i)   x + y= 5......(ii)  (ii)⇒x^2 +y^2 +2xy=25....(iii)  (iii)−(i): xy=6  Let x & y are the roots of a quadratic equation  ∵ x+y=5 & xy=6  ∴ The equation may be t^2 −(x+y)t+xy=0  Or t^2 −5t+6=0⇒t=2,3  ∴ (x=2 ∧ y=3) ∨ (x=3 ∧ y=2)
x2+y2+xy=19.(i)x+y=5(ii)(ii)x2+y2+2xy=25.(iii)(iii)(i):xy=6Letx&yaretherootsofaquadraticequationx+y=5&xy=6Theequationmaybet2(x+y)t+xy=0Ort25t+6=0t=2,3(x=2y=3)(x=3y=2)

Leave a Reply

Your email address will not be published. Required fields are marked *