Menu Close

Determine-x-x-3-x-1-1-3-2-




Question Number 218047 by dscm last updated on 27/Mar/25
Determine x:  (√(x+3)) + ((x+1))^(1/3)  =2
Determinex:x+3+x+13=2
Answered by Rasheed.Sindhi last updated on 27/Mar/25
(√(x+3)) + ((x+1))^(1/3)  =2  ((x+1))^(1/3)  =y⇒x=y^3 −1  (√(y^3 +2)) =2−y  y^3 +2=y^2 +4−4y  y^3 −y^2 +4y−2=0  ...
x+3+x+13=2x+13=yx=y31y3+2=2yy3+2=y2+44yy3y2+4y2=0
Answered by Frix last updated on 27/Mar/25
((x+1))^(1/3) =2−(√(x+3))  x+1=6x+26−(x+15)(√(x+3))  (x+15)(√(x+3))=5x+25  (x+15)^2 (x+3)=(5x+25)^2   x^3 +8x^2 +65x+50=0  x=−(1/3)(8−((1153+150(√(159))))^(1/3) +((−1153+150(√(159))))^(1/3) )  ...better use a calculator to approximate  x≈−.848429802
x+13=2x+3x+1=6x+26(x+15)x+3(x+15)x+3=5x+25(x+15)2(x+3)=(5x+25)2x3+8x2+65x+50=0x=13(81153+1501593+1153+1501593)betteruseacalculatortoapproximatex.848429802
Answered by vnm last updated on 27/Mar/25
x+3=u^2   u+((u^2 −2))^(1/3) =2  u^2 −2=(2−u)^3   u^2 −2=8−12u+6u^2 −u^3   u^3 −5u^2 +12u−10=0  u=t+(5/3)  t^3 +((11)/3)t+((20)/(27))=0  t=((−((10)/(27))+(√((53)/(27)))))^(1/3) +((−((10)/(27))−(√((53)/(27)))))^(1/3)   x=(t+(5/3))^2 −3
x+3=u2u+u223=2u22=(2u)3u22=812u+6u2u3u35u2+12u10=0u=t+53t3+113t+2027=0t=1027+53273+102753273x=(t+53)23

Leave a Reply

Your email address will not be published. Required fields are marked *