Menu Close

x-2-x-1-0-x-4-x-2-1-




Question Number 218099 by Rasheed.Sindhi last updated on 29/Mar/25
x^2 +x+1=0 , x^4 +x^2 +1=?
x2+x+1=0,x4+x2+1=?
Answered by Rasheed.Sindhi last updated on 29/Mar/25
Another way  (x^2 +x+1)^2 =0^2   x^4 +x^2 +1+2x^3 +2x+2x^2 =0  x^4 +x^2 +1+2x(x^2 +x+1)=0  x^4 +x^2 +1+2x(0)=0  x^4 +x^2 +1=0
Anotherway(x2+x+1)2=02x4+x2+1+2x3+2x+2x2=0x4+x2+1+2x(x2+x+1)=0x4+x2+1+2x(0)=0x4+x2+1=0
Answered by profcedricjunior last updated on 29/Mar/25
x^2 +x+1=0=>x^2 +1=−x  =>(x^2 +1)^2 =(−x)^2   =>x^4 +2x^2 +1=x^2 =>x^4 +x^2 +1=0
x2+x+1=0=>x2+1=x=>(x2+1)2=(x)2=>x4+2x2+1=x2=>x4+x2+1=0
Answered by ArshadS last updated on 29/Mar/25
x^2 +x+1=0 , x^4 +x^2 +1=?  •x^2 +x+1=0⇒x^2 +1=−x  •x^4 +x^2 +1=x^4 +2x^2 +1−x^2                        =(x^2 +1)^2 −x^2                         =(−x)^2 −x^2 =0
x2+x+1=0,x4+x2+1=?x2+x+1=0x2+1=xx4+x2+1=x4+2x2+1x2=(x2+1)2x2=(x)2x2=0
Answered by ArshadS last updated on 30/Mar/25
x^2 +x+1=0 , x^4 +x^2 +1=?  (x−1)(x^2 +x+1)=0  x^3 −1=0  x=1,ω,ω^2   ∵x=1 is root of x−1  ∴ ω,ω^2 are the roots of given equation.  Case1: x=ω  x^4 +x^2 +1=ω^4 +ω^2 +1  =ω^3 .ω+ω^2 +1=ω^2 +ω+1=0  Case2: x=ω^2   x^4 +x^2 +1=(ω^2 )^4 +(ω^2 )^2 +1  =ω^8 +ω^4 +1=(ω^3 )^2 .ω^2 +ω^3 .ω+1  =ω^2 +ω+1=0
x2+x+1=0,x4+x2+1=?(x1)(x2+x+1)=0x31=0x=1,ω,ω2x=1isrootofx1ω,ω2aretherootsofgivenequation.Case1:x=ωx4+x2+1=ω4+ω2+1=ω3.ω+ω2+1=ω2+ω+1=0Case2:x=ω2x4+x2+1=(ω2)4+(ω2)2+1=ω8+ω4+1=(ω3)2.ω2+ω3.ω+1=ω2+ω+1=0
Answered by MATHEMATICSAM last updated on 30/Mar/25
x^2 +x+1=0 , x^4 +x^2 +1=?  x^4  + x^2  + 1  = x^4  + 2x^2  + 1 − x^2   = (x^2  + 1)^2  − x^2   = (x^2  + x + 1)(x^2  − x + 1)  = 0 × (x^2  −x + 1)  = 0
x2+x+1=0,x4+x2+1=?x4+x2+1=x4+2x2+1x2=(x2+1)2x2=(x2+x+1)(x2x+1)=0×(x2x+1)=0

Leave a Reply

Your email address will not be published. Required fields are marked *