Menu Close

x-y-12-minimum-value-of-x-2-4-y-2-9-




Question Number 218153 by Rojarani last updated on 31/Mar/25
 x+y =12   minimum value of   (√(x^2 +4)) +(√(y^2 +9)) =?
x+y=12minimumvalueofx2+4+y2+9=?
Answered by mr W last updated on 31/Mar/25
Commented by Ghisom last updated on 31/Mar/25
nice!
nice!
Commented by mr W last updated on 31/Mar/25
AC=(√(x^2 +2^2 ))=(√(x^2 +4))  BC=(√(y^2 +3^2 ))=(√(y^2 +9))  AB=(√(12^2 +(2+3)^2 ))=13  AC+BC≥AB  ⇒(√(x^2 +4))+(√(y^2 +9))≥13  i.e. ((√(x^2 +4))+(√(y^2 +9)))_(min) =13
AC=x2+22=x2+4BC=y2+32=y2+9AB=122+(2+3)2=13AC+BCABx2+4+y2+913i.e.(x2+4+y2+9)min=13
Commented by Rojarani last updated on 31/Mar/25
 Sir, thanks.
Sir,thanks.
Commented by mehdee7396 last updated on 01/Apr/25
very  good   ⋛
verygood
Commented by mr W last updated on 01/Apr/25
thanks to all!
thankstoall!
Answered by efronzo1 last updated on 31/Mar/25
Answered by vnm last updated on 31/Mar/25
x=6+t,   y=6−t  (d/dt)((√((6+t)^2 +4))+(√((6−t)^2 +9)))=  ((6+t)/( (√((6+t)^2 +4))))+((6−t)/( (√((6−t)^2 +9))))=  (((6+t)(√((6−t)^2 +9))+(6−t)(√((6+t)^2 +4)))/( (√((6+t)^2 +4))(√((6−t)^2 +9))))=0  (t+6)(√(t^2 −12t+45))=(t−6)(√(t^2 +12t+40))  (t^2 +12t+36)(t^2 −12t+45)=  (t^2 −12t+36)(t^2 +12t+40)  (t^2 +12t)45+36(−12t+45)=  (t^2 −12t)40+36(12t+40)  5t^2 +12t∙85−36∙24t+36∙5=0  5t^2 +156t+180=0  t=((−78±72)/5)  t_1 =−30 in this point (d/dt)(x^2 +4)>0 and (d/dt)(y^2 +9)>0,   therefor this point isn′t the point of minimum  t_2 =−(6/5)  (√((6−(6/5))^2 +4))+(√((6+(6/5))^2 +9))=13
x=6+t,y=6tddt((6+t)2+4+(6t)2+9)=6+t(6+t)2+4+6t(6t)2+9=(6+t)(6t)2+9+(6t)(6+t)2+4(6+t)2+4(6t)2+9=0(t+6)t212t+45=(t6)t2+12t+40(t2+12t+36)(t212t+45)=(t212t+36)(t2+12t+40)(t2+12t)45+36(12t+45)=(t212t)40+36(12t+40)5t2+12t853624t+365=05t2+156t+180=0t=78±725t1=30inthispointddt(x2+4)>0andddt(y2+9)>0,thereforthispointisntthepointofminimumt2=65(665)2+4+(6+65)2+9=13

Leave a Reply

Your email address will not be published. Required fields are marked *