Menu Close

This-question-is-really-important-Prove-or-disprove-that-lim-n-3-n-m-3-n-1-2-n-2-3-n-1-2-n-the-limit-exists-for-m-N-B-where-B-n-log-2-n-N-




Question Number 218208 by Marzuk last updated on 01/Apr/25
This question is really important  Prove or disprove that  lim_(n→∞)  ((3^n m+3^(n−1) )/2^(⌈(n/2)⌉) ) + (3^(n−1) /2^n )    the limit exists for m ∈ N \B  where B = {n ∣ log_2 (n) ∈ N }
ThisquestionisreallyimportantProveordisprovethatlimn3nm+3n12n2+3n12nthelimitexistsformNBwhereB={nlog2(n)N}
Commented by Marzuk last updated on 01/Apr/25
This question is highly related with  Collatz  Conjecture
ThisquestionishighlyrelatedwithCollatzConjecture
Answered by MrGaster last updated on 05/Apr/25
=lim_(n→∞) ((3^(n−1) (3m+1))/2^([n/2]) )+(3^(n−1) /2^n )  =lim_(n→∞) 3^(n−1) (((3m+1)/2^([n/2]) )+(1/2^n )) ∀n∈N,[(n/2)]is defined as  ⌈(n/2)⌉= { (((n/2) if n∈even)),((((n+1)/2) if n is odd)) :}  Case when n is even:  2^(⌈(n/2)⌉) =2^(n/2)   ⇒((3^(n−1) (3m+1))/2^(n/2) )=((3^n (3m+1))/(3∙2^(n/2) ))=(((3m+1))/3)∙((9/2))^(n/2)   n∈odd:  2^(⌈(n/2)⌉) =2^((n+1)/2)   ⇒((3^(n−1) (3m+1))/2^((n+1)/2) )=((3^n (3m+1))/(3∙2^((n+1)/3) ))=(((3m+1))/(3(√2)))∙((9/2))^(n/2)   Second term:  (3^(n−1) /2^n )=(1/3)∙((3/4))^n   Main term analysis (order comparison):  ((9/2))^(n/2) ≫((3/4))^n ∵((9/2))^(1/2) =(3/( (√2)))>(3/4)  ⇒lim_(n→∞) (((3m+1)/3)∙((9/2))^(n/2) +(1/3)∙((3/4))^n )=+∞  ⇒∄lim
=limn3n1(3m+1)2[n/2]+3n12n=lim3nn1(3m+12[n/2]+12n)nN,[n2]isdefinedasn2={n2ifnevenn+12ifnisoddCasewhenniseven:2n2=2n/23n1(3m+1)2n/2=3n(3m+1)32n/2=(3m+1)3(92)n/2nodd:2n2=2(n+1)/23n1(3m+1)2(n+1)/2=3n(3m+1)32(n+1)/3=(3m+1)32(92)n/2Secondterm:3n12n=13(34)nMaintermanalysis(ordercomparison):(92)n/2(34)n(92)1/2=32>34limn(3m+13(92)n/2+13(34)n)=+lim

Leave a Reply

Your email address will not be published. Required fields are marked *