Prove-e-1-e-t-2-e-t-2-dt-1-1-e-2-e-the-base-of-natural-logarithm- Tinku Tara April 13, 2025 Integration 0 Comments FacebookTweetPin Question Number 218624 by Nicholas666 last updated on 13/Apr/25 Prove;∫1eet2et2dt⩽1−1e2e−thebaseofnaturallogarithm Answered by Nicholas666 last updated on 13/Apr/25 ∫1/eet2et2dt⩽1−1e2⇒f′t=ddt(t2e−t2)=2te−t2+t2(−2te−t2)=2te−t2(1−t2)⇒f′(0.5)=2(0.5)e−(0.5)2=e−0.25(1−0.25)=0.75e−25>0⇒f′(2)=2(2)e−22(1−22)=4e−4(1−4)=−12e−4<0⇒f(1)=12e12=1e⇒∫1/eet2et2dt⩽∫1/ee1edt⇒∫1/ee1edt=1e∫1/ee1dt=1e[t]1/ee=1e(e−1e)=e2−1e2=1−1e2⇒∫1/eet2et2dt⩽1−1e2Q.E.D Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Prove-that-for-all-real-numbers-a-and-b-with-a-lt-b-the-following-inequality-holds-a-b-1-dx-3-b-a-a-b-x-a-1-2-dx-a-b-1-a-x-1-3-dx-Next Next post: Question-218629 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.