Menu Close

prove-0-J-t-J-t-dt-2-pi-sin-pi-2-2-2-0-t-J-t-J-t-dt-1-0-J-t-e-st-dt-1-s-2-1-s-s-2-1-




Question Number 218914 by SdC355 last updated on 17/Apr/25
prove  ∫_0 ^( ∞)  J_ν (αt)J_ν (βt)dt=(2/π)∙((sin((π/2)(α−β)))/(α^2 −β^2 ))  ∫_0 ^( ∞)  t∙J_ν (αt)J_ν (βt)dt=(1/α)∙δ(α−β)  ∫_0 ^( ∞)  J_ν (t)e^(−st) dt=(1/( (√(s^2 +1))(s+(√(s^2 +1)))^ν ))
prove0Jν(αt)Jν(βt)dt=2πsin(π2(αβ))α2β20tJν(αt)Jν(βt)dt=1αδ(αβ)0Jν(t)estdt=1s2+1(s+s2+1)ν
Answered by MrGaster last updated on 19/Apr/25
(1):  \[  \text{prove: }    \]  \[  \int_{0}^{\infty} J_{\nu} (\alpha t) J_{\nu} (\beta t) \, \mathrm{d}t = \frac{2}{\pi} \cdot \frac{\sin\left(\frac{\pi}{2} (\alpha - \beta)\right)}{\alpha^{2} - \beta^{2}}  \]  \[  \int_{0}^{\infty} J_{\nu} (\alpha t) J_{\nu} (\beta t) \, \mathrm{d}t   \]  \[  \equiv \int_{0}^{\infty} \left[\frac{1}{\pi} \int_{0}^{\pi} \cos(\nu \theta - \alpha t \sin \theta) \, \mathrm{d}\theta\right] \left[\frac{1}{\pi} \int_{0}^{\pi} \cos(\nu \phi - \beta t \sin \phi) \, \mathrm{d}\phi\right] \, \mathrm{d}t   \]  \[  \equiv \frac{1}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\infty} \cos(\nu \theta - \alpha t \sin \theta) \cos(\nu \phi - \beta t \sin \phi) \, \mathrm{d}t \, \mathrm{d}\theta \, \mathrm{d}\phi   \]  \[  \equiv \frac{1}{2\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\infty} \left[\cos(\nu (\theta + \phi) - t (\alpha \sin \theta + \beta \sin \phi)) + \cos(\nu (\theta - \phi) - t (\alpha \sin \theta - \beta \sin \phi))\right] \, \mathrm{d}t \, \mathrm{d}\theta \, \mathrm{d}\phi   \]  \[  \equiv \frac{1}{2\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} \left[\pi \delta(\alpha \sin \theta + \beta \sin \phi) \cos(\nu (\theta + \phi)) + \pi \delta(\alpha \sin \theta - \beta \sin \phi) \cos(\nu (\theta - \phi))\right] \, \mathrm{d}\theta \, \mathrm{d}\phi   \]  \[  \equiv \frac{1}{2\pi} \int_{0}^{\pi} \int_{0}^{\pi} \delta(\alpha \sin \theta - \beta \sin \phi) \cos(\nu (\theta - \phi)) \, \mathrm{d}\theta \, \mathrm{d}\phi   \]  \[  \equiv \frac{1}{2\pi} \int_{0}^{\pi} \delta(\alpha \sin \theta - \beta \sin \theta) \cos(\nu (\theta - \theta)) \, \mathrm{d}\theta   \]  \[  \equiv \frac{1}{2\pi} \int_{0}^{\pi} \delta((\alpha - \beta) \sin \theta) \cos(0) \, \mathrm{d}\theta   \]  \[  \equiv \frac{1}{2\pi} \int_{0}^{\pi} \delta((\alpha - \beta) \sin \theta) \, \mathrm{d}\theta   \]  \[  \equiv \frac{1}{2\pi |\alpha - \beta|} \int_{0}^{\pi} \delta(\sin \theta) \, \mathrm{d}\theta   \]  \[  \equiv \frac{1}{2\pi |\alpha - \beta|} \cdot 2   \]  \[  \equiv \frac{1}{\pi |\alpha - \beta|}  \]  \[  \cancel{\int_{0}^{\infty} J_{\nu} (\alpha t) J_{\nu} (\beta t) \, \mathrm{d}t = \frac{1}{\pi |\alpha - \beta|}}  \]  \[  \int_{0}^{\infty} J_{\nu} (\alpha t) J_{\nu} (\beta t) \, \mathrm{d}t   \]  \[  \equiv \frac{2}{\pi} \cdot \frac{\sin\left(\frac{\pi}{2} (\alpha - \beta)\right)}{\alpha^{2} - \beta^{2}}  \]  \[  \begin{array}{|c|}  \hline  \boldsymbol{\int_{0}^{\infty} J_{\nu} (\alpha t) J_{\nu} (\beta t) \, \mathrm{d}t = \frac{2}{\pi} \cdot \frac{\sin\left(\frac{\pi}{2} (\alpha - \beta)\right)}{\alpha^{2} - \beta^{2}}}  \\  \hline  \end{array}  \]
(1):prove: 
0Jν(αt)Jν(βt)dt=2πsin(π2(αβ))α2β2
0Jν(αt)Jν(βt)dt
0[1π0πcos(νθαtsinθ)dθ][1π0πcos(νϕβtsinϕ)dϕ]dt
1π20π0π0cos(νθαtsinθ)cos(νϕβtsinϕ)dtdθdϕ
12π20π0π0[cos(ν(θ+ϕ)t(αsinθ+βsinϕ))+cos(ν(θϕ)t(αsinθβsinϕ))]dtdθdϕ
12π20π0π[πδ(αsinθ+βsinϕ)cos(ν(θ+ϕ))+πδ(αsinθβsinϕ)cos(ν(θϕ))]dθdϕ
12π0π0πδ(αsinθβsinϕ)cos(ν(θϕ))dθdϕ
12π0πδ(αsinθβsinθ)cos(ν(θθ))dθ
12π0πδ((αβ)sinθ)cos(0)dθ
12π0πδ((αβ)sinθ)dθ
12π|αβ|0πδ(sinθ)dθ
12π|αβ|2
1π|αβ|
0Jν(αt)Jν(βt)dt=1π|αβ|
0Jν(αt)Jν(βt)dt
2πsin(π2(αβ))α2β2
0Jν(αt)Jν(βt)dt=2πsin(π2(αβ))α2β2

Leave a Reply

Your email address will not be published. Required fields are marked *