Menu Close

if-a-b-c-Z-and-a-2-b-2-c-2-then-3-ab-




Question Number 219289 by Nicholas666 last updated on 22/Apr/25
      if           a,b,c ∈ Z   ,       and            a^2  + b^2  =  c^2    ,          then      3∣(ab) = ?
ifa,b,cZ,anda2+b2=c2,then3(ab)=?
Commented by Nicholas666 last updated on 22/Apr/25
thanks
thanks
Answered by A5T last updated on 22/Apr/25
Any perfect square is equivalent to 0 or 1 (mod 3)  ⇒a^2 +b^2  ≡ 0+0 ,0+1, 1+0 ,1+1 (mod 3)  But a^2 +b^2  is also a perfect square, hence cannot  be equivalent to 1+1=2(mod 3).  ⇒ (a,b)≡(0,0);(0,1);(1,0) (mod 3)  ⇒At least one of a,b is divisible by 3.  Hence, 3∣(ab)
Anyperfectsquareisequivalentto0or1(mod3)a2+b20+0,0+1,1+0,1+1(mod3)Buta2+b2isalsoaperfectsquare,hencecannotbeequivalentto1+1=2(mod3).(a,b)(0,0);(0,1);(1,0)(mod3)Atleastoneofa,bisdivisibleby3.Hence,3(ab)
Answered by vnm last updated on 22/Apr/25
let a=kp, b=kq, where p,q are coprime  one of the numbers p,q can be represented  as m^2 −n^2  and the other as 2mn  if 3∣m or 3∣n then 3∣(2mn)⇒3∣(ab)  if 3∤m and 3∤n  then m=3r+s, n=3t+u  where ∣s∣=∣u∣=1⇒3∣(m^2 −n^2 )⇒3∣(ab)
leta=kp,b=kq,wherep,qarecoprimeoneofthenumbersp,qcanberepresentedasm2n2andtheotheras2mnif3mor3nthen3(2mn)3(ab)if3mand3nthenm=3r+s,n=3t+uwheres∣=∣u∣=13(m2n2)3(ab)

Leave a Reply

Your email address will not be published. Required fields are marked *