Menu Close

Question-227276




Question Number 227276 by mr W last updated on 11/Jan/26
Commented by mr W last updated on 12/Jan/26
A hemispherical funnel is placed  tightly against the top of a table.   Water is poured into it slowly   through a small hole located at the   highest point of the funnel. When   the water level inside the funnel   just reaches the hole the funnel   begins to float upward and the   water starts to flow out from the   bottom. If the radius of  the funnel   is R=10 cm and the density of water  is ρ=1 g/cm^3 , find the mass of the   funnel.
$${A}\:{hemispherical}\:{funnel}\:{is}\:{placed} \\ $$$${tightly}\:{against}\:{the}\:{top}\:{of}\:{a}\:{table}.\: \\ $$$${Water}\:{is}\:{poured}\:{into}\:{it}\:{slowly}\: \\ $$$${through}\:{a}\:{small}\:{hole}\:{located}\:{at}\:{the}\: \\ $$$${highest}\:{point}\:{of}\:{the}\:{funnel}.\:{When}\: \\ $$$${the}\:{water}\:{level}\:{inside}\:{the}\:{funnel}\: \\ $$$${just}\:{reaches}\:{the}\:{hole}\:{the}\:{funnel}\: \\ $$$${begins}\:{to}\:{float}\:{upward}\:{and}\:{the}\: \\ $$$${water}\:{starts}\:{to}\:{flow}\:{out}\:{from}\:{the}\: \\ $$$${bottom}.\:{If}\:{the}\:{radius}\:{of}\:\:{the}\:{funnel}\: \\ $$$${is}\:{R}=\mathrm{10}\:{cm}\:{and}\:{the}\:{density}\:{of}\:{water} \\ $$$${is}\:\rho=\mathrm{1}\:{g}/{cm}^{\mathrm{3}} ,\:{find}\:{the}\:{mass}\:{of}\:{the}\: \\ $$$${funnel}. \\ $$
Answered by Kassista last updated on 13/Jan/26
  Critical moment: Buoyancy = Weight of the funnel  ∴ ρV_(hemisphere ) g = Mg ⇒ρ((2πR^3 )/3) = M   { ((ρ =1g.cm^(−3) )),((R=10 cm)) :}⇒ M = ((2000π)/3) g = ((2π)/3) kg ≈ 2.09kg
$$ \\ $$$${Critical}\:{moment}:\:{Buoyancy}\:=\:{Weight}\:{of}\:{the}\:{funnel} \\ $$$$\therefore\:\rho{V}_{{hemisphere}\:} {g}\:=\:{Mg}\:\Rightarrow\rho\frac{\mathrm{2}\pi{R}^{\mathrm{3}} }{\mathrm{3}}\:=\:{M} \\ $$$$\begin{cases}{\rho\:=\mathrm{1}{g}.{cm}^{−\mathrm{3}} }\\{{R}=\mathrm{10}\:{cm}}\end{cases}\Rightarrow\:{M}\:=\:\frac{\mathrm{2000}\pi}{\mathrm{3}}\:{g}\:=\:\frac{\mathrm{2}\pi}{\mathrm{3}}\:{kg}\:\approx\:\mathrm{2}.\mathrm{09}{kg} \\ $$$$ \\ $$
Commented by mr W last updated on 13/Jan/26
why is buoyancy =ρg V_(hemisphere)  ?
$${why}\:{is}\:{buoyancy}\:=\rho{g}\:{V}_{{hemisphere}} \:? \\ $$
Answered by fantastic2 last updated on 17/Jan/26
Commented by mr W last updated on 17/Jan/26
��
Commented by fantastic2 last updated on 17/Jan/26
h=R(1−sin α)  P=hρg=R(1−sin α)ρg  Area of disc  =2πRcos α×Rdα  =2πR^2 cos αdα  dF=P×A  =2πR^3 ρg(1−sin α)cos αdα  dF_⊥ =2πR^3 ρg(1−sin α)cos αsin αdα  F=∫_0 ^(π/2) 2πR^3 ρg(1−sin α)cos αsin αdα  =2πR^3 ρg(∫_0 ^(π/2) sin αcos αdα−∫_0 ^(π/2) sin^2 αcos αdα)  let y=sin α  ∴(dy/dα)=cos α  ⇒dy=cos αdα  sin 0=0  sin (π/2)=1  ∴2πR^3 ρg(∫_0 ^1 y dy−∫_0 ^1 y^2  dy)  =2πR^3 ρg((1/2)−(1/3))  =2πR^3 ρg×(1/6)  =(1/3)πR^3 ρg  Mg=(1/3)πR^3 ρg  ∴M=(1/3)πR^3 ρ=(1/3)πR^3
$${h}={R}\left(\mathrm{1}−\mathrm{sin}\:\alpha\right) \\ $$$${P}={h}\rho{g}={R}\left(\mathrm{1}−\mathrm{sin}\:\alpha\right)\rho{g} \\ $$$${Area}\:{of}\:{disc} \\ $$$$=\mathrm{2}\pi{R}\mathrm{cos}\:\alpha×{Rd}\alpha \\ $$$$=\mathrm{2}\pi{R}^{\mathrm{2}} \mathrm{cos}\:\alpha{d}\alpha \\ $$$${dF}={P}×{A} \\ $$$$=\mathrm{2}\pi{R}^{\mathrm{3}} \rho{g}\left(\mathrm{1}−\mathrm{sin}\:\alpha\right)\mathrm{cos}\:\alpha{d}\alpha \\ $$$${dF}_{\bot} =\mathrm{2}\pi{R}^{\mathrm{3}} \rho{g}\left(\mathrm{1}−\mathrm{sin}\:\alpha\right)\mathrm{cos}\:\alpha\mathrm{sin}\:\alpha{d}\alpha \\ $$$${F}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{2}\pi{R}^{\mathrm{3}} \rho{g}\left(\mathrm{1}−\mathrm{sin}\:\alpha\right)\mathrm{cos}\:\alpha\mathrm{sin}\:\alpha{d}\alpha \\ $$$$=\mathrm{2}\pi{R}^{\mathrm{3}} \rho{g}\left(\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}\:\alpha\mathrm{cos}\:\alpha{d}\alpha−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}\:^{\mathrm{2}} \alpha\mathrm{cos}\:\alpha{d}\alpha\right) \\ $$$${let}\:{y}=\mathrm{sin}\:\alpha \\ $$$$\therefore\frac{{dy}}{{d}\alpha}=\mathrm{cos}\:\alpha \\ $$$$\Rightarrow{dy}=\mathrm{cos}\:\alpha{d}\alpha \\ $$$$\mathrm{sin}\:\mathrm{0}=\mathrm{0} \\ $$$$\mathrm{sin}\:\frac{\pi}{\mathrm{2}}=\mathrm{1} \\ $$$$\therefore\mathrm{2}\pi{R}^{\mathrm{3}} \rho{g}\left(\int_{\mathrm{0}} ^{\mathrm{1}} {y}\:{dy}−\int_{\mathrm{0}} ^{\mathrm{1}} {y}^{\mathrm{2}} \:{dy}\right) \\ $$$$=\mathrm{2}\pi{R}^{\mathrm{3}} \rho{g}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$=\mathrm{2}\pi{R}^{\mathrm{3}} \rho{g}×\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\pi{R}^{\mathrm{3}} \rho{g} \\ $$$${Mg}=\frac{\mathrm{1}}{\mathrm{3}}\pi{R}^{\mathrm{3}} \rho{g} \\ $$$$\therefore{M}=\frac{\mathrm{1}}{\mathrm{3}}\pi{R}^{\mathrm{3}} \rho=\frac{\mathrm{1}}{\mathrm{3}}\pi{R}^{\mathrm{3}} \\ $$$$ \\ $$
Answered by mr W last updated on 17/Jan/26
Commented by mr W last updated on 17/Jan/26
weight of funnel   = buoyancy forec  = water weight displaced   = ρg×hitched volume  =ρg(πR^2 ×R−((2πR^3 )/3))  =((πR^3 ρg)/3)  ⇒mass of funnel =((πR^3 ρ)/3)
$${weight}\:{of}\:{funnel}\: \\ $$$$=\:{buoyancy}\:{forec} \\ $$$$=\:{water}\:{weight}\:{displaced}\: \\ $$$$=\:\rho{g}×{hitched}\:{volume} \\ $$$$=\rho{g}\left(\pi{R}^{\mathrm{2}} ×{R}−\frac{\mathrm{2}\pi{R}^{\mathrm{3}} }{\mathrm{3}}\right) \\ $$$$=\frac{\pi{R}^{\mathrm{3}} \rho{g}}{\mathrm{3}} \\ $$$$\Rightarrow{mass}\:{of}\:{funnel}\:=\frac{\pi{R}^{\mathrm{3}} \rho}{\mathrm{3}} \\ $$
Answered by mr W last updated on 17/Jan/26
Commented by mr W last updated on 17/Jan/26
at the moment as the funnel starts  to float upward, the contact force  between funnel and ground is zero.  p=ρgR  total pressure   = total weight of water and funnel  πR^2 ×ρgR=((2πR^3 ρg)/3)+M_(funnel) g  ⇒M_(funnel) =((πR^3 ρ)/3)
$${at}\:{the}\:{moment}\:{as}\:{the}\:{funnel}\:{starts} \\ $$$${to}\:{float}\:{upward},\:{the}\:{contact}\:{force} \\ $$$${between}\:{funnel}\:{and}\:{ground}\:{is}\:{zero}. \\ $$$${p}=\rho{gR} \\ $$$${total}\:{pressure}\: \\ $$$$=\:{total}\:{weight}\:{of}\:{water}\:{and}\:{funnel} \\ $$$$\pi{R}^{\mathrm{2}} ×\rho{gR}=\frac{\mathrm{2}\pi{R}^{\mathrm{3}} \rho{g}}{\mathrm{3}}+{M}_{{funnel}} {g} \\ $$$$\Rightarrow{M}_{{funnel}} =\frac{\pi{R}^{\mathrm{3}} \rho}{\mathrm{3}} \\ $$
Commented by fantastic2 last updated on 17/Jan/26
WooooW!
$${WooooW}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *