Menu Close

Let-f-x-1-q-x-p-q-p-q-Z-gcd-p-q-1-q-gt-0-0-x-R-Q-1-Show-that-f-x-is-continuous-function-when-x-R-Q-2-Show-that-f-x-is-not-a-continuous-function-when-x-Q-3-Prove




Question Number 227438 by Lara2440 last updated on 29/Jan/26
Let f(x)= { (((1/q)     x=(p/q) , p,q∈Z , gcd(p,q)=1 , q>0)),((0    x∈R\Q)) :}     1. Show that f(x) is continuous function when x∈R\Q  2. Show that f(x) is not a continuous function when x∈Q  3. Prove function g(x) does not exist  when g(x) is a function that is continuous only in x∈Q  4. ∫_( R)  f(x)dx
$$\mathrm{Let}\:{f}\left({x}\right)=\begin{cases}{\frac{\mathrm{1}}{{q}}\:\:\:\:\:{x}=\frac{{p}}{{q}}\:,\:{p},{q}\in\mathbb{Z}\:,\:\mathrm{gcd}\left({p},{q}\right)=\mathrm{1}\:,\:{q}>\mathrm{0}}\\{\mathrm{0}\:\:\:\:{x}\in\mathbb{R}\backslash\mathbb{Q}}\end{cases} \\ $$$$\: \\ $$$$\mathrm{1}.\:\mathrm{Show}\:\mathrm{that}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{function}\:\mathrm{when}\:{x}\in\mathbb{R}\backslash\mathbb{Q} \\ $$$$\mathrm{2}.\:\mathrm{Show}\:\mathrm{that}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{continuous}\:\mathrm{function}\:\mathrm{when}\:{x}\in\mathbb{Q} \\ $$$$\mathrm{3}.\:\mathrm{Prove}\:\mathrm{function}\:\mathrm{g}\left({x}\right)\:\mathrm{does}\:\mathrm{not}\:\mathrm{exist} \\ $$$$\mathrm{when}\:\mathrm{g}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{function}\:\mathrm{that}\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{only}\:\mathrm{in}\:{x}\in\mathbb{Q} \\ $$$$\mathrm{4}.\:\int_{\:\mathbb{R}} \:{f}\left({x}\right)\mathrm{d}{x} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *