Menu Close

find-0-e-x-3-dx-




Question Number 79527 by mathmax by abdo last updated on 25/Jan/20
find ∫_0 ^∞  e^(−x^3 ) dx
$${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{3}} } {dx} \\ $$
Commented by mathmax by abdo last updated on 26/Jan/20
let I =∫_0 ^∞  e^(−x^3 ) dx  changement x^3  =t give x=t^(1/3)   I =∫_0 ^∞  e^(−t)  (1/3)t^((1/3)−1) dt =(1/3)∫_0 ^∞  t^((1/3)−1)  e^(−t)  dt  we have   Γ(x)=∫_0 ^∞  t^(x−1)  e^(−t)  dt  (x>0) ⇒I =(1/3)Γ((1/3))
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{3}} } {dx}\:\:{changement}\:{x}^{\mathrm{3}} \:={t}\:{give}\:{x}={t}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${I}\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} \:\frac{\mathrm{1}}{\mathrm{3}}{t}^{\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}} {dt}\:=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \:{t}^{\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}} \:{e}^{−{t}} \:{dt}\:\:{we}\:{have}\: \\ $$$$\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} \:{dt}\:\:\left({x}>\mathrm{0}\right)\:\Rightarrow{I}\:=\frac{\mathrm{1}}{\mathrm{3}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *