Question Number 14148 by RasheedSindhi last updated on 28/May/17
$$\mathrm{Determine} \\ $$$$\left({a}\right)\:{i}^{{i}} \\ $$$$\left({b}\right)\:\omega^{\omega} \\ $$$$\left({c}\right)\:{i}^{\omega} \\ $$$$\left({d}\right)\:\omega^{{i}} \\ $$
Answered by prakash jain last updated on 28/May/17
$$\left.{a}\right) \\ $$$${i}={e}^{{i}\frac{\pi}{\mathrm{2}}} \\ $$$${i}^{{i}} =\left({e}^{{i}\frac{\pi}{\mathrm{2}}} \right)^{{i}} ={e}^{−\frac{\pi}{\mathrm{2}}} \\ $$
Commented by RasheedSindhi last updated on 31/May/17
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$
Answered by sma3l2996 last updated on 29/May/17
$$\left({b}\right):\:\:\:\:\omega^{\omega} =\left({e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \right)^{\omega} ={e}^{{i}\omega\frac{\mathrm{2}\pi}{\mathrm{3}}} ={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}\left(−\frac{\mathrm{1}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)} ={e}^{−{i}\frac{\mathrm{2}\pi}{\mathrm{3}}×\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{2}\pi}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \\ $$$$={e}^{−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\pi} ×{e}^{−{i}\frac{\pi}{\mathrm{3}}} ={e}^{\frac{−\pi}{\:\sqrt{\mathrm{3}}}} ×\left(\frac{\mathrm{1}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=−{e}^{\frac{−\pi}{\:\sqrt{\mathrm{3}}}} ×\left(−\frac{\mathrm{1}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$\omega^{\omega} =−{e}^{\frac{−\pi}{\:\sqrt{\mathrm{3}}}} ×\omega \\ $$$$\left({a}\right):\:\:{i}^{{i}} =\left({e}^{{i}\frac{\pi}{\mathrm{2}}} \right)^{{i}} ={e}^{−\frac{\pi}{\mathrm{2}}} \\ $$$$\left({c}\right):\:\:\:{i}^{\omega} ={e}^{{i}\omega\frac{\pi}{\mathrm{2}}} ={e}^{{i}\frac{\pi}{\mathrm{2}}\left(−\frac{\mathrm{1}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)} ={e}^{−\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\pi−{i}\frac{\pi}{\mathrm{4}}} \\ $$$${i}^{\omega} =\frac{{e}^{−\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\pi} }{\:\sqrt{\mathrm{2}}}\left(\mathrm{1}−{i}\right) \\ $$$$\left({d}\right):\:\:\:\omega^{{i}} =\left({e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \right)^{{i}} ={e}^{−\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$
Commented by RasheedSindhi last updated on 31/May/17
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$