Menu Close

f-is-derivable-in-R-1-Demonstrate-that-if-f-is-pair-f-is-odd-unpair-1-Demonstrate-that-if-f-is-unpair-f-is-pair-Please-help-me-sirs-




Question Number 79876 by mathocean1 last updated on 28/Jan/20
f is derivable in R.  1) Demonstrate that if f is pair , f ′ is odd(unpair).  1) Demonstrate that if f is unpair , f ′ is pair.    Please help me sirs
$${f}\:{is}\:{derivable}\:{in}\:\mathbb{R}. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Demonstrate}\:\mathrm{that}\:\mathrm{if}\:{f}\:\mathrm{is}\:\mathrm{pair}\:,\:{f}\:'\:\mathrm{is}\:\mathrm{odd}\left(\mathrm{unpair}\right). \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Demonstrate}\:\mathrm{that}\:\mathrm{if}\:{f}\:{is}\:\mathrm{unpair}\:,\:{f}\:'\:\mathrm{is}\:\mathrm{pair}. \\ $$$$ \\ $$$$\mathrm{Please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{sirs} \\ $$
Commented by MJS last updated on 29/Jan/20
if “pair” means f(−x)=f(x)  and “unpair” means f(−x)=−f(x)  then i.e.  y=cos x and y=x^2 ; y=x^4  are pair  y=sin x and y=x; y=x^3  are unpair  draw them and try to understand how the  slopes must look like
$$\mathrm{if}\:“\mathrm{pair}''\:\mathrm{means}\:{f}\left(−{x}\right)={f}\left({x}\right) \\ $$$$\mathrm{and}\:“\mathrm{unpair}''\:\mathrm{means}\:{f}\left(−{x}\right)=−{f}\left({x}\right) \\ $$$$\mathrm{then}\:\mathrm{i}.\mathrm{e}. \\ $$$${y}=\mathrm{cos}\:{x}\:\mathrm{and}\:{y}={x}^{\mathrm{2}} ;\:{y}={x}^{\mathrm{4}} \:\mathrm{are}\:\mathrm{pair} \\ $$$${y}=\mathrm{sin}\:{x}\:\mathrm{and}\:{y}={x};\:{y}={x}^{\mathrm{3}} \:\mathrm{are}\:\mathrm{unpair} \\ $$$$\mathrm{draw}\:\mathrm{them}\:\mathrm{and}\:\mathrm{try}\:\mathrm{to}\:\mathrm{understand}\:\mathrm{how}\:\mathrm{the} \\ $$$$\mathrm{slopes}\:\mathrm{must}\:\mathrm{look}\:\mathrm{like} \\ $$
Answered by Henri Boucatchou last updated on 29/Jan/20
  f  is  derivable  for  all x_0 ∈R,  that′s   lim_(x→x_0 ) ((f(x)−f(x_0 ))/(x−x_0 ))=f ′(x_0 )  f  pair  ⇒  lim_(x−→x_0 ) −((f(−x)−f(−x_0 ))/((−x)−(−x_0 )))=−f ′(−x_0 )=lim_(x→x_0 ) ((f(x)−f(x_0 ))/(x−x_0 ))=f ′(x_0 )    ⇒ f ′(−x_0 )=−f ′(x_0 )  e.i.  f ′  is  odd;  f  unpair  ⇒  lim_(x→x_0 ) −((f(−x)−f(−x_0 ))/((−x)−(−x_0 )))=−f ′(−x_0 )=lim_(x→x_0 ) ((−[f(x)−f(x_0 )])/(x−x_0 ))=−f ′(x_0 )    ⇒−f ′(−x_0 )=−f ′(x_0 )    ⇒  f ′(−x_0 )=f ′(x_0 )  e.i.  f ′  is  pair.
$$\:\:{f}\:\:{is}\:\:{derivable}\:\:{for}\:\:{all}\:{x}_{\mathrm{0}} \in\mathbb{R},\:\:{that}'{s} \\ $$$$\:\underset{{x}\rightarrow{x}_{\mathrm{0}} } {{lim}}\frac{{f}\left({x}\right)−{f}\left({x}_{\mathrm{0}} \right)}{{x}−{x}_{\mathrm{0}} }={f}\:'\left({x}_{\mathrm{0}} \right) \\ $$$${f}\:\:{pair}\:\:\Rightarrow\:\:\underset{{x}−\rightarrow{x}_{\mathrm{0}} } {{lim}}−\frac{{f}\left(−{x}\right)−{f}\left(−{x}_{\mathrm{0}} \right)}{\left(−{x}\right)−\left(−{x}_{\mathrm{0}} \right)}=−{f}\:'\left(−{x}_{\mathrm{0}} \right)=\underset{{x}\rightarrow{x}_{\mathrm{0}} } {{lim}}\frac{{f}\left({x}\right)−{f}\left({x}_{\mathrm{0}} \right)}{{x}−{x}_{\mathrm{0}} }={f}\:'\left({x}_{\mathrm{0}} \right) \\ $$$$\:\:\Rightarrow\:{f}\:'\left(−{x}_{\mathrm{0}} \right)=−{f}\:'\left({x}_{\mathrm{0}} \right)\:\:{e}.{i}.\:\:{f}\:'\:\:{is}\:\:{odd}; \\ $$$${f}\:\:{unpair}\:\:\Rightarrow\:\:\underset{{x}\rightarrow{x}_{\mathrm{0}} } {{lim}}−\frac{{f}\left(−{x}\right)−{f}\left(−{x}_{\mathrm{0}} \right)}{\left(−{x}\right)−\left(−{x}_{\mathrm{0}} \right)}=−{f}\:'\left(−{x}_{\mathrm{0}} \right)=\underset{{x}\rightarrow{x}_{\mathrm{0}} } {{lim}}\frac{−\left[{f}\left({x}\right)−{f}\left({x}_{\mathrm{0}} \right)\right]}{{x}−{x}_{\mathrm{0}} }=−{f}\:'\left({x}_{\mathrm{0}} \right) \\ $$$$\:\:\Rightarrow−{f}\:'\left(−{x}_{\mathrm{0}} \right)=−{f}\:'\left({x}_{\mathrm{0}} \right) \\ $$$$\:\:\Rightarrow\:\:{f}\:'\left(−{x}_{\mathrm{0}} \right)={f}\:'\left({x}_{\mathrm{0}} \right)\:\:{e}.{i}.\:\:{f}\:'\:\:{is}\:\:{pair}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *