Menu Close

Question-145449




Question Number 145449 by solihin last updated on 05/Jul/21
Answered by Olaf_Thorendsen last updated on 05/Jul/21
p = (1/2)πa+2a+2b = ((π/2)+2)a+2b = 5  A = ((πa^2 )/8)+ab  A = ((πa^2 )/8)+a×(1/2)(5−((π/2)+2)a)  A = −((π/8)+1)a^2 +(5/2)a  A′(a) = −((π/4)+2)a+(5/2)  maximum for A′(a) = 0  ⇒ a = (5/(2((π/4)+2))) = ((10)/(π+8))  b = (1/2)(5−((π/2)+2)a)  b = (((6−π)/4))((10)/(π+8)) = ((5(6−π))/(2(8+π)))  A = ((πa^2 )/8)+ab  A = ((100π)/(8(π+8)^2 ))+((10)/(π+8)).((5(6−π))/(2(8+π)))  A = ((25π+50(6−π))/(2(π+8)^2 ))  A = ((25(12−π))/(2(π+8)^2 ))
$${p}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\pi{a}+\mathrm{2}{a}+\mathrm{2}{b}\:=\:\left(\frac{\pi}{\mathrm{2}}+\mathrm{2}\right){a}+\mathrm{2}{b}\:=\:\mathrm{5} \\ $$$${A}\:=\:\frac{\pi{a}^{\mathrm{2}} }{\mathrm{8}}+{ab} \\ $$$${A}\:=\:\frac{\pi{a}^{\mathrm{2}} }{\mathrm{8}}+{a}×\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{5}−\left(\frac{\pi}{\mathrm{2}}+\mathrm{2}\right){a}\right) \\ $$$${A}\:=\:−\left(\frac{\pi}{\mathrm{8}}+\mathrm{1}\right){a}^{\mathrm{2}} +\frac{\mathrm{5}}{\mathrm{2}}{a} \\ $$$${A}'\left({a}\right)\:=\:−\left(\frac{\pi}{\mathrm{4}}+\mathrm{2}\right){a}+\frac{\mathrm{5}}{\mathrm{2}} \\ $$$${maximum}\:{for}\:{A}'\left({a}\right)\:=\:\mathrm{0} \\ $$$$\Rightarrow\:{a}\:=\:\frac{\mathrm{5}}{\mathrm{2}\left(\frac{\pi}{\mathrm{4}}+\mathrm{2}\right)}\:=\:\frac{\mathrm{10}}{\pi+\mathrm{8}} \\ $$$${b}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{5}−\left(\frac{\pi}{\mathrm{2}}+\mathrm{2}\right){a}\right) \\ $$$${b}\:=\:\left(\frac{\mathrm{6}−\pi}{\mathrm{4}}\right)\frac{\mathrm{10}}{\pi+\mathrm{8}}\:=\:\frac{\mathrm{5}\left(\mathrm{6}−\pi\right)}{\mathrm{2}\left(\mathrm{8}+\pi\right)} \\ $$$${A}\:=\:\frac{\pi{a}^{\mathrm{2}} }{\mathrm{8}}+{ab} \\ $$$${A}\:=\:\frac{\mathrm{100}\pi}{\mathrm{8}\left(\pi+\mathrm{8}\right)^{\mathrm{2}} }+\frac{\mathrm{10}}{\pi+\mathrm{8}}.\frac{\mathrm{5}\left(\mathrm{6}−\pi\right)}{\mathrm{2}\left(\mathrm{8}+\pi\right)} \\ $$$${A}\:=\:\frac{\mathrm{25}\pi+\mathrm{50}\left(\mathrm{6}−\pi\right)}{\mathrm{2}\left(\pi+\mathrm{8}\right)^{\mathrm{2}} } \\ $$$${A}\:=\:\frac{\mathrm{25}\left(\mathrm{12}−\pi\right)}{\mathrm{2}\left(\pi+\mathrm{8}\right)^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *