Menu Close

Is-there-a-solution-of-y-in-terms-of-x-for-the-following-D-E-dy-dx-c-1-y-c-2-x-c-3-2-c-4-Here-c-1-c-2-c-3-c-4-are-constants-




Question Number 1211 by 112358 last updated on 14/Jul/15
Is there a solution of y in terms  of x for the following D.E?              (dy/dx)+(c_1 /(y(c_2 x+c_3 )^2 ))=c_4   Here c_1 , c_2 , c_3 , c_4  are constants.
$${Is}\:{there}\:{a}\:{solution}\:{of}\:{y}\:{in}\:{terms} \\ $$$${of}\:{x}\:{for}\:{the}\:{following}\:{D}.{E}? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{{dy}}{{dx}}+\frac{{c}_{\mathrm{1}} }{{y}\left({c}_{\mathrm{2}} {x}+{c}_{\mathrm{3}} \right)^{\mathrm{2}} }={c}_{\mathrm{4}} \\ $$$${Here}\:{c}_{\mathrm{1}} ,\:{c}_{\mathrm{2}} ,\:{c}_{\mathrm{3}} ,\:{c}_{\mathrm{4}} \:{are}\:{constants}.\: \\ $$
Commented by prakash jain last updated on 18/Jul/15
I did not find a solution but the given DE  can be simplified a litle to  (dy/dx)+(c_1 /(yx^2 ))=c_2
$$\mathrm{I}\:\mathrm{did}\:\mathrm{not}\:\mathrm{find}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{but}\:\mathrm{the}\:\mathrm{given}\:\mathrm{DE} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{simplified}\:\mathrm{a}\:\mathrm{litle}\:\mathrm{to} \\ $$$$\frac{{dy}}{{dx}}+\frac{{c}_{\mathrm{1}} }{{yx}^{\mathrm{2}} }={c}_{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *