Question Number 1211 by 112358 last updated on 14/Jul/15
$${Is}\:{there}\:{a}\:{solution}\:{of}\:{y}\:{in}\:{terms} \\ $$$${of}\:{x}\:{for}\:{the}\:{following}\:{D}.{E}? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{{dy}}{{dx}}+\frac{{c}_{\mathrm{1}} }{{y}\left({c}_{\mathrm{2}} {x}+{c}_{\mathrm{3}} \right)^{\mathrm{2}} }={c}_{\mathrm{4}} \\ $$$${Here}\:{c}_{\mathrm{1}} ,\:{c}_{\mathrm{2}} ,\:{c}_{\mathrm{3}} ,\:{c}_{\mathrm{4}} \:{are}\:{constants}.\: \\ $$
Commented by prakash jain last updated on 18/Jul/15
$$\mathrm{I}\:\mathrm{did}\:\mathrm{not}\:\mathrm{find}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{but}\:\mathrm{the}\:\mathrm{given}\:\mathrm{DE} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{simplified}\:\mathrm{a}\:\mathrm{litle}\:\mathrm{to} \\ $$$$\frac{{dy}}{{dx}}+\frac{{c}_{\mathrm{1}} }{{yx}^{\mathrm{2}} }={c}_{\mathrm{2}} \\ $$