Menu Close

Let-a-i-4j-2k-b-3i-2j-7k-and-c-2i-j-4k-Find-a-vector-d-which-is-perpendicular-to-both-a-and-b-and-c-d-15-




Question Number 15352 by Tinkutara last updated on 09/Jun/17
Let a^→  = i^∧  + 4j^∧  + 2k^∧ , b^→  = 3i^∧  − 2j^∧  + 7k^∧   and c^→  = 2i^∧  − j^∧  + 4k^∧  . Find a vector d^→   which is perpendicular to both a^→  and b^→ ,  and c^→  ∙ d^→  = 15.
$$\mathrm{Let}\:\overset{\rightarrow} {{a}}\:=\:\overset{\wedge} {{i}}\:+\:\mathrm{4}\overset{\wedge} {{j}}\:+\:\mathrm{2}\overset{\wedge} {{k}},\:\overset{\rightarrow} {{b}}\:=\:\mathrm{3}\overset{\wedge} {{i}}\:−\:\mathrm{2}\overset{\wedge} {{j}}\:+\:\mathrm{7}\overset{\wedge} {{k}} \\ $$$$\mathrm{and}\:\overset{\rightarrow} {{c}}\:=\:\mathrm{2}\overset{\wedge} {{i}}\:−\:\overset{\wedge} {{j}}\:+\:\mathrm{4}\overset{\wedge} {{k}}\:.\:\mathrm{Find}\:\mathrm{a}\:\mathrm{vector}\:\overset{\rightarrow} {{d}} \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{both}\:\overset{\rightarrow} {{a}}\:\mathrm{and}\:\overset{\rightarrow} {{b}}, \\ $$$$\mathrm{and}\:\overset{\rightarrow} {{c}}\:\centerdot\:\overset{\rightarrow} {{d}}\:=\:\mathrm{15}. \\ $$
Commented by prakash jain last updated on 10/Jun/17
a^→ ×b^→ = determinant ((i,j,k),(1,4,2),(3,(−2),7))  =i(28+4)−j(7−6)+k(−2−12)  =32i−j−14k  a^→ ×b^→  is perpendicular to both a and b.  unit vector perpendicular to a and b  n=((a×b)/(∣a×b∣))=((32i−j−14k)/( (√(32^2 +1+14^2 ))))=((32i−j−14k)/( (√(1221))))  d=kn=k((32i−j−14k)/( (√(1221))))  c∙d=15  k((32×2+1−14×4)/( (√(1221))))=15  k(9/( (√(1221))))=15  k=((15(√(1221)))/9)  d=kn=((15(√(1221)))/9)(((32i−j−14k)/( (√(1221)))))  d=(5/3)(32i−j−14k)
$$\overset{\rightarrow} {{a}}×\overset{\rightarrow} {{b}}=\begin{vmatrix}{\boldsymbol{{i}}}&{\boldsymbol{{j}}}&{\boldsymbol{{k}}}\\{\mathrm{1}}&{\mathrm{4}}&{\mathrm{2}}\\{\mathrm{3}}&{−\mathrm{2}}&{\mathrm{7}}\end{vmatrix} \\ $$$$=\boldsymbol{{i}}\left(\mathrm{28}+\mathrm{4}\right)−\boldsymbol{{j}}\left(\mathrm{7}−\mathrm{6}\right)+\boldsymbol{{k}}\left(−\mathrm{2}−\mathrm{12}\right) \\ $$$$=\mathrm{32}\boldsymbol{{i}}−\boldsymbol{{j}}−\mathrm{14}\boldsymbol{{k}} \\ $$$$\overset{\rightarrow} {{a}}×\overset{\rightarrow} {{b}}\:\mathrm{is}\:\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{both}\:\boldsymbol{{a}}\:\mathrm{and}\:\boldsymbol{{b}}. \\ $$$${unit}\:{vector}\:{perpendicular}\:{to}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}} \\ $$$$\boldsymbol{{n}}=\frac{\boldsymbol{{a}}×\boldsymbol{{b}}}{\mid\boldsymbol{{a}}×\boldsymbol{{b}}\mid}=\frac{\mathrm{32}{i}−{j}−\mathrm{14}{k}}{\:\sqrt{\mathrm{32}^{\mathrm{2}} +\mathrm{1}+\mathrm{14}^{\mathrm{2}} }}=\frac{\mathrm{32}{i}−{j}−\mathrm{14}{k}}{\:\sqrt{\mathrm{1221}}} \\ $$$$\boldsymbol{{d}}={k}\boldsymbol{{n}}={k}\frac{\mathrm{32}{i}−{j}−\mathrm{14}{k}}{\:\sqrt{\mathrm{1221}}} \\ $$$$\boldsymbol{{c}}\centerdot\boldsymbol{{d}}=\mathrm{15} \\ $$$${k}\frac{\mathrm{32}×\mathrm{2}+\mathrm{1}−\mathrm{14}×\mathrm{4}}{\:\sqrt{\mathrm{1221}}}=\mathrm{15} \\ $$$${k}\frac{\mathrm{9}}{\:\sqrt{\mathrm{1221}}}=\mathrm{15} \\ $$$${k}=\frac{\mathrm{15}\sqrt{\mathrm{1221}}}{\mathrm{9}} \\ $$$$\boldsymbol{{d}}={k}\boldsymbol{{n}}=\frac{\mathrm{15}\sqrt{\mathrm{1221}}}{\mathrm{9}}\left(\frac{\mathrm{32}\boldsymbol{{i}}−\boldsymbol{{j}}−\mathrm{14}\boldsymbol{{k}}}{\:\sqrt{\mathrm{1221}}}\right) \\ $$$$\boldsymbol{{d}}=\frac{\mathrm{5}}{\mathrm{3}}\left(\mathrm{32}\boldsymbol{{i}}−\boldsymbol{{j}}−\mathrm{14}\boldsymbol{{k}}\right) \\ $$
Commented by Tinkutara last updated on 10/Jun/17
But answer is (1/3)(160i^∧  − 5j^∧  + 70k^∧ )
$$\mathrm{But}\:\mathrm{answer}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{160}\overset{\wedge} {{i}}\:−\:\mathrm{5}\overset{\wedge} {{j}}\:+\:\mathrm{70}\overset{\wedge} {{k}}\right) \\ $$
Commented by prakash jain last updated on 10/Jun/17
corrected. Forgot to cancel (√(1221))
$$\mathrm{corrected}.\:\mathrm{Forgot}\:\mathrm{to}\:\mathrm{cancel}\:\sqrt{\mathrm{1221}} \\ $$
Commented by Tinkutara last updated on 10/Jun/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *