Menu Close

Question-146784




Question Number 146784 by tabata last updated on 15/Jul/21
Commented by tabata last updated on 15/Jul/21
???????
$$??????? \\ $$
Commented by tabata last updated on 15/Jul/21
help me please
$${help}\:{me}\:{please} \\ $$
Answered by Cyriille last updated on 15/Jul/21
Q2\  y=(√x)    y=2x−1,  x=0  at point of intersecrion,  (√x) = 2x−1  ⇒x=(2x−1)^2   ⇒x=4x^2 −4x+1  ⇒4x^2 −5x+1=0  ⇒x=1 or x=(1/4)  at x=1, y=1  at x=(1/4), y=-(1/2)  y=(√x)  ⇒x=y^2   y=2x−1  ⇒x=((y+1)/2)  A=∫_(-(1/2)) ^1 y^2 dy −∫_(-(1/2)) ^1 ((y+1)/2)dy     ⇒[(y^3 /3)]_(-(1/2)) ^1 −[(y^2 /4)+(y/2)]_(-(1/2)) ^1       ⇒[(1/3)−((((−(1/2))^3 )/3))]−[((1/4)+(1/2))−((((-(1/2))^2 )/4)+((-(1/2))/2))]       ⇒(3/8)−((15)/(16))=-(9/(16))
$$\boldsymbol{\mathrm{Q}}\mathrm{2}\backslash \\ $$$${y}=\sqrt{{x}}\:\:\:\:{y}=\mathrm{2}{x}−\mathrm{1},\:\:{x}=\mathrm{0} \\ $$$${at}\:{point}\:{of}\:{intersecrion}, \\ $$$$\sqrt{{x}}\:=\:\mathrm{2}{x}−\mathrm{1} \\ $$$$\Rightarrow{x}=\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{x}=\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1} \\ $$$$\Rightarrow\mathrm{4}{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{1}\:{or}\:{x}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${at}\:{x}=\mathrm{1},\:{y}=\mathrm{1} \\ $$$${at}\:{x}=\frac{\mathrm{1}}{\mathrm{4}},\:{y}=-\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${y}=\sqrt{{x}}\:\:\Rightarrow{x}={y}^{\mathrm{2}} \\ $$$${y}=\mathrm{2}{x}−\mathrm{1}\:\:\Rightarrow{x}=\frac{{y}+\mathrm{1}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{A}}=\int_{-\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} {y}^{\mathrm{2}} {dy}\:−\int_{-\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \frac{{y}+\mathrm{1}}{\mathrm{2}}{dy} \\ $$$$\:\:\:\Rightarrow\left[\frac{{y}^{\mathrm{3}} }{\mathrm{3}}\right]_{-\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} −\left[\frac{{y}^{\mathrm{2}} }{\mathrm{4}}+\frac{{y}}{\mathrm{2}}\right]_{-\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \\ $$$$\:\:\:\:\Rightarrow\left[\frac{\mathrm{1}}{\mathrm{3}}−\left(\frac{\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} }{\mathrm{3}}\right)\right]−\left[\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\left(\frac{\left(-\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{4}}+\frac{-\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{2}}\right)\right] \\ $$$$\:\:\:\:\:\Rightarrow\frac{\mathrm{3}}{\mathrm{8}}−\frac{\mathrm{15}}{\mathrm{16}}=-\frac{\mathrm{9}}{\mathrm{16}} \\ $$
Commented by tabata last updated on 15/Jul/21
sir how the area in negitive
$${sir}\:{how}\:{the}\:{area}\:{in}\:{negitive} \\ $$
Commented by Cyriille last updated on 01/Oct/21
take abosolute value
$${take}\:{abosolute}\:{value} \\ $$
Answered by Cyriille last updated on 15/Jul/21
Q4\  y=∫_1 ^x (√(t^2 −1))dt,  A=∫_a ^b ydx  y=∫_1 ^x (√(t^2 −1))dt  ⇒y=∫_a ^b tanθ(tanθ)secθdθ          =∫_a ^b ((sin^2 θ)/(cos^3 θ))dθ           =∫_a ^b sinθ.((sinθ)/(cos^3 θ))dθ  I can not continue but I hope my idea was correct!
$$\boldsymbol{\mathrm{Q}}\mathrm{4}\backslash \\ $$$${y}=\int_{\mathrm{1}} ^{{x}} \sqrt{{t}^{\mathrm{2}} −\mathrm{1}}{dt},\:\:\boldsymbol{{A}}=\int_{{a}} ^{{b}} {ydx} \\ $$$${y}=\int_{\mathrm{1}} ^{{x}} \sqrt{{t}^{\mathrm{2}} −\mathrm{1}}{dt} \\ $$$$\Rightarrow{y}=\int_{{a}} ^{{b}} {tan}\theta\left({tan}\theta\right){sec}\theta{d}\theta \\ $$$$\:\:\:\:\:\:\:\:=\int_{{a}} ^{{b}} \frac{{sin}^{\mathrm{2}} \theta}{{cos}^{\mathrm{3}} \theta}{d}\theta \\ $$$$\:\:\:\:\:\:\:\:\:=\int_{{a}} ^{{b}} {sin}\theta.\frac{{sin}\theta}{{cos}^{\mathrm{3}} \theta}{d}\theta \\ $$$$\boldsymbol{\mathrm{I}}\:\mathrm{can}\:\mathrm{not}\:\mathrm{continue}\:\mathrm{but}\:\mathrm{I}\:\mathrm{hope}\:\mathrm{my}\:\mathrm{idea}\:\mathrm{was}\:\mathrm{correct}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *