Menu Close

sin-x-cos-x-lt-0-




Question Number 146961 by mathdanisur last updated on 16/Jul/21
(√(sin(x))) ∙ cos(x) < 0
$$\sqrt{{sin}\left({x}\right)}\:\centerdot\:{cos}\left({x}\right)\:<\:\mathrm{0} \\ $$
Answered by TheHoneyCat last updated on 16/Jul/21
this expression _(′′(√)′′)  requires that sin(x)>0  thus cos(x)<0    sin(x)>0⇔x∈∪_(k∈Z) ]2kπ,(2k+1)π[  cos(x)<0⇔x∈∪_(k∈Z) ](2k−^1 /_2 )π,(2k+^1 /_2 )π[
$$\mathrm{this}\:\mathrm{expression}\:_{''\sqrt{}''} \:\mathrm{requires}\:\mathrm{that}\:{sin}\left({x}\right)>\mathrm{0} \\ $$$$\mathrm{thus}\:{cos}\left({x}\right)<\mathrm{0} \\ $$$$ \\ $$$$\left.{sin}\left({x}\right)>\mathrm{0}\Leftrightarrow{x}\in\underset{{k}\in\mathbb{Z}} {\cup}\right]\mathrm{2}{k}\pi,\left(\mathrm{2}{k}+\mathrm{1}\right)\pi\left[\right. \\ $$$$\left.{cos}\left({x}\right)<\mathrm{0}\Leftrightarrow{x}\in\underset{{k}\in\mathbb{Z}} {\cup}\right]\left(\mathrm{2}{k}−^{\mathrm{1}} /_{\mathrm{2}} \right)\pi,\left(\mathrm{2}{k}+^{\mathrm{1}} /_{\mathrm{2}} \right)\pi\left[\right. \\ $$$$ \\ $$
Commented by TheHoneyCat last updated on 16/Jul/21
thus x∈∪_(k∈Z) ]2kπ,(2k+^1 /_2 )π[
$$\left.{thus}\:{x}\in\underset{{k}\in\mathbb{Z}} {\cup}\right]\mathrm{2}{k}\pi,\left(\mathrm{2}{k}+^{\mathrm{1}} /_{\mathrm{2}} \right)\pi\left[\right. \\ $$
Commented by TheHoneyCat last updated on 16/Jul/21
or x∈]0,(π/2)[ if you want the canonical angle
$$\left.{or}\:{x}\in\right]\mathrm{0},\frac{\pi}{\mathrm{2}}\left[\:{if}\:{you}\:{want}\:{the}\:{canonical}\:{angle}\right. \\ $$
Commented by mathdanisur last updated on 16/Jul/21
thank you Ser
$${thank}\:{you}\:{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *