Menu Close

let-the-matrix-A-1-2-1-3-1-calculste-A-n-2-find-e-A-and-e-A-3-find-cosA-and-sinA-




Question Number 81430 by abdomathmax last updated on 13/Feb/20
let the matrix A= (((1       2)),((−1   3)) )  1) calculste A^n   2) find  e^A  and e^(−A)   3)find cosA and sinA
$${let}\:{the}\:{matrix}\:{A}=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\mathrm{2}}\\{−\mathrm{1}\:\:\:\mathrm{3}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculste}\:{A}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{e}^{{A}} \:{and}\:{e}^{−{A}} \\ $$$$\left.\mathrm{3}\right){find}\:{cosA}\:{and}\:{sinA} \\ $$
Commented by abdomathmax last updated on 13/Feb/20
1) P_c (A) =det (A−xI)= determinant (((1−x       2)),((−1       3−x)))  =(1−x)(3−x)+2 =3−x−3x+x^2  +2  =x^2 −4x +5 →Δ^′ =4−5 =−1 ⇒  λ_1 =2+i  and λ_2 =2−i  x^n =Q (x)P_c (x) +u_n x +v_n  ⇒  A^n  =u_n  A +v_(n I)   λ_1 ^n = u_n λ_1  +v_n  and λ_2 ^n  =u_n λ_2  +v_n  ⇒  λ_1 ^n  −λ_2 ^n  =(λ_1 −λ_2 )u_n  ⇒u_n =((λ_1 ^n  −λ_2 ^n )/(2i))  =((2i Im(λ_1 ^n ))/(2i)) =Im(λ_1 ^n )  we have λ_1 =(√5)e^(iarctan((1/2)))  ⇒  λ_1 ^n  =((√5))^n  e^(inarctan((1/2)))  ⇒u_n =((√5))^n sin(narctan((1/2)))  v_n =λ_1 ^n −λ_1 u_n =λ_1 ^n −λ_1 ×((λ_1 ^n  −λ_2 ^n )/(λ_1  −λ_2 ))  =((λ_1 ^(n+1) −λ_2  λ_1 ^n  −λ_1 ^(n+1) +λ_1  λ_2 ^n )/(λ_1  −λ_2 )) =((λ_1 λ_2 ^n −λ_2 λ_1 ^n )/(2i))  A^n  =((√5))^n  sin(narctan((1/2)))A+v_n  I  v_n  =(((2+i)(2−i)^n −(2−i)(2+i)^n )/(2i))  =Im(2+i)(2−i)^n  we have  2+i=(√5)e^(iarctan((1/2))) and   (2−i)^n  =((√5)e^(−iarctan((1/2))) )^n   =((√5))^n  e^(−in arctan((1/2)))  ⇒  (2+i)(2−i)^n  =((√5))^(n+1)  e^(−i(n−1)arctan((1/2)))   ⇒v_n =−((√5))^(n+1)  sin(n−1)arctan((1/2))
$$\left.\mathrm{1}\right)\:{P}_{{c}} \left({A}\right)\:={det}\:\left({A}−{xI}\right)=\begin{vmatrix}{\mathrm{1}−{x}\:\:\:\:\:\:\:\mathrm{2}}\\{−\mathrm{1}\:\:\:\:\:\:\:\mathrm{3}−{x}}\end{vmatrix} \\ $$$$=\left(\mathrm{1}−{x}\right)\left(\mathrm{3}−{x}\right)+\mathrm{2}\:=\mathrm{3}−{x}−\mathrm{3}{x}+{x}^{\mathrm{2}} \:+\mathrm{2} \\ $$$$={x}^{\mathrm{2}} −\mathrm{4}{x}\:+\mathrm{5}\:\rightarrow\Delta^{'} =\mathrm{4}−\mathrm{5}\:=−\mathrm{1}\:\Rightarrow \\ $$$$\lambda_{\mathrm{1}} =\mathrm{2}+{i}\:\:{and}\:\lambda_{\mathrm{2}} =\mathrm{2}−{i} \\ $$$${x}^{{n}} ={Q}\:\left({x}\right){P}_{{c}} \left({x}\right)\:+{u}_{{n}} {x}\:+{v}_{{n}} \:\Rightarrow \\ $$$${A}^{{n}} \:={u}_{{n}} \:{A}\:+{v}_{{n}\:{I}} \\ $$$$\lambda_{\mathrm{1}} ^{{n}} =\:{u}_{{n}} \lambda_{\mathrm{1}} \:+{v}_{{n}} \:{and}\:\lambda_{\mathrm{2}} ^{{n}} \:={u}_{{n}} \lambda_{\mathrm{2}} \:+{v}_{{n}} \:\Rightarrow \\ $$$$\lambda_{\mathrm{1}} ^{{n}} \:−\lambda_{\mathrm{2}} ^{{n}} \:=\left(\lambda_{\mathrm{1}} −\lambda_{\mathrm{2}} \right){u}_{{n}} \:\Rightarrow{u}_{{n}} =\frac{\lambda_{\mathrm{1}} ^{{n}} \:−\lambda_{\mathrm{2}} ^{{n}} }{\mathrm{2}{i}} \\ $$$$=\frac{\mathrm{2}{i}\:{Im}\left(\lambda_{\mathrm{1}} ^{{n}} \right)}{\mathrm{2}{i}}\:={Im}\left(\lambda_{\mathrm{1}} ^{{n}} \right)\:\:{we}\:{have}\:\lambda_{\mathrm{1}} =\sqrt{\mathrm{5}}{e}^{{iarctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\Rightarrow \\ $$$$\lambda_{\mathrm{1}} ^{{n}} \:=\left(\sqrt{\mathrm{5}}\right)^{{n}} \:{e}^{{inarctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\Rightarrow{u}_{{n}} =\left(\sqrt{\mathrm{5}}\right)^{{n}} {sin}\left({narctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$${v}_{{n}} =\lambda_{\mathrm{1}} ^{{n}} −\lambda_{\mathrm{1}} {u}_{{n}} =\lambda_{\mathrm{1}} ^{{n}} −\lambda_{\mathrm{1}} ×\frac{\lambda_{\mathrm{1}} ^{{n}} \:−\lambda_{\mathrm{2}} ^{{n}} }{\lambda_{\mathrm{1}} \:−\lambda_{\mathrm{2}} } \\ $$$$=\frac{\lambda_{\mathrm{1}} ^{{n}+\mathrm{1}} −\lambda_{\mathrm{2}} \:\lambda_{\mathrm{1}} ^{{n}} \:−\lambda_{\mathrm{1}} ^{{n}+\mathrm{1}} +\lambda_{\mathrm{1}} \:\lambda_{\mathrm{2}} ^{{n}} }{\lambda_{\mathrm{1}} \:−\lambda_{\mathrm{2}} }\:=\frac{\lambda_{\mathrm{1}} \lambda_{\mathrm{2}} ^{{n}} −\lambda_{\mathrm{2}} \lambda_{\mathrm{1}} ^{{n}} }{\mathrm{2}{i}} \\ $$$${A}^{{n}} \:=\left(\sqrt{\mathrm{5}}\right)^{{n}} \:{sin}\left({narctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right){A}+{v}_{{n}} \:{I} \\ $$$${v}_{{n}} \:=\frac{\left(\mathrm{2}+{i}\right)\left(\mathrm{2}−{i}\right)^{{n}} −\left(\mathrm{2}−{i}\right)\left(\mathrm{2}+{i}\right)^{{n}} }{\mathrm{2}{i}} \\ $$$$={Im}\left(\mathrm{2}+{i}\right)\left(\mathrm{2}−{i}\right)^{{n}} \:{we}\:{have} \\ $$$$\mathrm{2}+{i}=\sqrt{\mathrm{5}}{e}^{{iarctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} {and}\:\:\:\left(\mathrm{2}−{i}\right)^{{n}} \:=\left(\sqrt{\mathrm{5}}{e}^{−{iarctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \right)^{{n}} \\ $$$$=\left(\sqrt{\mathrm{5}}\right)^{{n}} \:{e}^{−{in}\:{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\Rightarrow \\ $$$$\left(\mathrm{2}+{i}\right)\left(\mathrm{2}−{i}\right)^{{n}} \:=\left(\sqrt{\mathrm{5}}\right)^{{n}+\mathrm{1}} \:{e}^{−{i}\left({n}−\mathrm{1}\right){arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$$\Rightarrow{v}_{{n}} =−\left(\sqrt{\mathrm{5}}\right)^{{n}+\mathrm{1}} \:{sin}\left({n}−\mathrm{1}\right){arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *